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Abstract. For deterministic control systems with digital communication constraints, an ap-
proach is explained which, in particular, permits to determine minimal bit rates and entropy for
exponential stabilization. In the case of linear systems, a formula for the entropy associated with
exponential stabilization is provided.
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1. Introduction. The problem to determine minimal data rates for perform-
ing control tasks has been considered for quite a while, see the survey Nair, Fagnani,
Zampieri and Evans [27]. Early landmarks are the papers by Delchamps [14], who con-
sidered quantized information for stabilization and proposed to use statistical methods
from ergodic theory, and Wong and Brockett [30] who discussed stabilization of linear
systems via coding. From the wealth of literature on this topic we also cite Tatikonda
and Mitter [28], Delvenne [15], Fagnani and Zampieri [17], Bullo and Liberzon [3] and
the monograph Matveev and Savkin [24].

In the seminal paper Nair, Evans, Mareels, and Moran [26], the notion of topo-
logical feedback entropy is proposed which is a variant of the classical notion of topo-
logical entropy for dynamical systems; see Adler, Konheim, and McAndrew [1]. In
non-technical terms, the basic idea for the related approach presented here (which
is closer in spirit to the Bowen-Dinaburg version of topological entropy) is the fol-
lowing. Consider a control task on the time interval [0;1). For example, this may
be the problem to make a subset of the state space invariant or the problem to sta-
bilize the system at an equilibrium. Then a controller device is constructed which
performs the control task based on measurements of the output of the system. If
successful, the controller will generate control actions on the system such that the
desired behavior is achieved for all initial values in a given set K in the state space.
If continual measurement of the output is not possible due to data rate constraints
(in a noiseless communication channel), the controller only has a �nite amount of in-
formation available on any �nite interval [0; T ]. Hence, it may appear reasonable that
the controller can only generate a �nite number of time-dependent control functions
u(t), t 2 [0; T ], which are to guarantee the desired behavior on [0; T ] for every initial
state in K. If time increases, the amount of information for the controller increases,
and hence it may generate more controls. Looking at this from the other side, the
number of control functions which are necessary for accomplishing the control task on
[0; T ], determines the minimal bit rate. Thus, the growth rate of the minimal number
of control functions as time tends to in�nity is a measure for the minimal bit rate
required in order to accomplish the control task on [0;1) for all initial values in K
(certainly, this provides a lower bound.)

The control functions may be obtained via quantizations of the state space, sym-
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bolic controllers or via devices like Model Predictive Control (MPC). In any case, this
results in a collection of time-dependent control functions u de�ned on [0;1) yielding
the desired objective. Instead of concentrating on the algorithmic question how to
generate these controls, we discuss the minimal bit rate needed to discern the time-
dependent control functions u on any time interval [0; T ], T > 0. This, in fact, is the
point of view taken in Tatikonda and Mitter [28], p. 1057, who estimate the minimal
bit rate for stabilization of discrete-time linear systems from below, see Proposition
3.2 in [28].

This basic idea can be formalized in di¤erent ways, depending, in particular, on
the considered control objectives. The problem to keep the system in a subset of the
state space is treated in detail in a forthcoming monograph by Christoph Kawan; see
also Kawan [20, 21, 22, 23] and Colonius and Kawan [9], [10]. In the following we
concentrate on stabilization problems.

As mentioned above, in this problem formulation a close analogy to the notion of
topological entropy in the theory of dynamical systems is apparent; the monographs
Katok and Hasselblatt [19], Walters [29], and Downarowicz [16] contain expositions
of this theory. Here one observes, how fast trajectories of a dynamical system move
apart, and hence one counts initial points. In control, the decisive parameter which
determines the behavior of trajectories is the control function. Hence we will count
control functions and then we use rather analogous mathematical constructions. Re-
grettably, many formulas in entropy theory contain repeated limit operations and, on
�rst sight, may appear extremely technical. The same is true when this machinery is
applied in control. However, these formulas have intuitive interpretations which help
to guess their properties, and in my opinion this theory provides e¢ cient mathematical
tools also in our �eld.

In Section 2, the entropy notion for exponential stabilization is introduced and
motivation for its formulation is provided. In particular, also relations to quantization
of the state space are brie�y discussed. Section 3 presents results for linear control
systems and discusses modi�cations in the case where a dynamic compensator is used
to generate controls. Final Section 4 mentions further work and some open problems.

Notation. The closure of a set A is clA and the number of elements of a �nite set
A is #A; if A is the empty set or if A has in�nitely many elements, we set #A =1.
The limit superior and the limit inferior are denoted by lim and lim, respectively.

2. Entropy for �ows and control systems. In this section, we start by brie�y
sketching the idea of topological entropy of linear autonomous di¤erential equations.
Then entropy for exponential stabilization is motivated and de�ned.

Topological entropy for linear autonomous di¤erential equations answers the ques-
tion: How many �di¤erent� trajectories are there? To be more precise, consider for
� > 0 the scalar di¤erential equation

_x(t) = �x(t); t � 0; x(0) = x0 2 K := [�1; 1]:

Fix T; " > 0. A �nite set R(T; ") � [�1; 1] of initial values is called (T; ")-spanning if
for all x0 2 [�1; 1] there is y0 2 R(T; ") with

e�t jx0 � y0j =
��e�tx0 � e�ty0�� < " for all t 2 [0; T ]:

The minimal number of elements in such a set R(T; ") grows like e�T and hence

lim
T!1

1

T
log#R(T; ") = �:
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This can be interpreted in the following way: log2#R(T; ") is the number of bits (the
information) generated by the system on [0; T ] modulo ". If #R(T; ") = 2k, then the
elements can be encoded by sequences (s1 ::: sk) with si 2 f0; 1g. Now consider the
general case for A 2 Rn�n,

_x(t) = Ax(t); t � 0; x(0) = x0 2 K � Rn, K compact.

Again, �x T; " > 0. A �nite set R(T; ") � K is called (T; ")-spanning if for all x0 2 K
there is y0 2 R(T; ") witheAtx0 � eAty0 < " for all t 2 [0; T ]:
Let R(T; ") be minimal. Then the topological entropy with respect to K is de�ned as

htop(K) := lim"!0 limT!1
1

T
log#R(T; "):

A classical result due to Bowen [2] states that for every set K with nonvoid interior
htop(K) =

P
Re�>0Re�, where the natural logarithm is taken and summation is

over all unstable eigenvalues � of A counted according to their multiplicity; see also
Walters [29, Theorem 8.14]. One sees that there are two ingredients in this notion:
The parameter " > 0 allows us to obtain on every interval [0; T ] a �nite amount of
information, and then the average value for time T !1 is considered. At the end, the
parameter " is sent to 0 (which amounts to taking the supremum over " > 0.) Bowen�s
formula shows up in many places in problems with communication constraints. In fact,
a variant of it will also be relevant below.

Next we turn to control systems and we will use somehow analogous constructions
for control problems by counting the average number of necessary time-dependent
control functions. This excludes feedbacks. In fact, for a control system _x = f(x; u)
a stabilizing feedback u = F (x) generates controls (depending on x0)

u(t) := F (x(t; x0)); x0 2 Rn;

where x(t; x0) solves

_x(t; x0) = f(x(t; x0); F (x(t; x0))); x(0; x0) = x0:

When the initial states are in an uncountable set, in general, also uncountably many
controls will have to be generated, even on a �nite time interval.

We will consider exponential stabilization properties. Let K � Rn be a bounded
set of initial states with 0 2 intK and assume that there are � > 0;M > 1 such that
for all 0 6= x0 2 K there is a control u with

kx(t; x0; u)k < Me��t kx0k for all t � 0:

Note that for stable systems it may also be of interest to increase the exponential
decay rate �. The following proposition shows that �nitely many controls do not
su¢ ce to get the exponential estimate, even on �nite intervals. Hence we will have to
add a parameter " in the problem formulation.

Proposition 2.1. Consider a linear control system of the form

_x = Ax+Bu
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with A 2 Rn�n; B 2 Rn�m and controls u : [0;1) ! Rm which are integrable on
every bounded interval. Assume that there is an eigenvalue � of A with Re� � 0. Let
� > 0;M > 1 and consider a neighborhood K of the origin. Then, for T > 0 large
enough, there is no �nite set R of control functions such that for every 0 6= x0 2 K
there is u 2 R with

kx(t; x0; u)k < Me��t kx0k for all t 2 [0; T ]: (2.1)

Proof. We proceed by contradiction. Suppose that a �nite set R = fu1; :::; urg of
control functions with the stated property exists and de�ne

Kj := fx0 2 K j kx(t; x0; uj)k < Me��t kx0k for all t 2 [0; T ]g:

Consider x0 6= 0 in the real eigenspace E(�) for � and suppose that T is large enough
such thatMe��T < 1. Then the variations-of-constants formula shows that no control
u0 with

R t
0
eA(t�s)Bu0(s)ds � 0 will yield estimate (2.1) for x0. There are controls

uj 2 R; j 2 J � f1; :::; rg which for all 0 6= x0 2 K \E(�) yield estimate (2.1). Then
we may assume that for every control uj ; j 2 J , there is tj 2 [0; T ] with

cj := max
t2[0;T ]

Z t

0

eA(t�s)Buj(s)ds

 = Z tj

0

eA(tj�s)Buj(s)ds

 > 0:
Choose 0 6= x0 2 K \ E(�) with kx0k < e�T Re�minj2J cj

2M . We �nd for every j 2 J
the contradiction

kx(tj ; x0; uj)k =
e�tjx0 + Z tj

0

eA(tj�s)Buj(s)ds


�
Z tj

0

eA(tj�s)Buj(s)ds

� etj Re� kx0k
� cj �

cj
2
=
cj
2
� e��tj cj

2
> Me��tj kx0k :

In contrast to linear control systems, the scalar bilinear system

_x = (1 + u)x; u 2 U = R;

can be stabilized by the single constant control u(t) � �2. Thus a single bit is
su¢ cient. See also de Persis [13] for other situations where �nitely many bits are
su¢ cient. While it might be worthwhile to study bilinear control systems in this
context, we follow a di¤erent path in the rest of this paper and relax the exponential
controllability property by introducing a small additive term.

Let us formulate our problem of exponential stabilization about the equilibrium
x� = 0 corresponding to the control u� = 0 more formally. Consider a nonlinear
control system of the form

_x(t) = f(x(t); u(t)); u 2 U ; (2.2)

where f : Rn � Rm ! Rn is continuous and Lipschitz continuous with respect to the
�rst argument; the admissible controls are given by

U = fu : [0;1)! Rm j u(t) 2 U for almost all t � 0g;
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where we assume that the controls u are integrable on every bounded interval and
the control range U is a subset of Rm. We assume that (i) unique global solutions
x(t; x0; u); t � 0; of the di¤erential equation with initial condition x(0) = x0 2 Rn and
control u 2 U exist and (ii) on compact intervals, the solutions depend continuously
on the initial value.

The following simple, but basic lemma shows that for a relaxed version of the
exponential controllability property only �nitely many bits are required on a �nite
interval.

Lemma 2.2. Consider a control system of the form (2.2) and let K be a compact
subset of Rn. Assume that there are constants � > 0 and M > 1 such that for all
0 6= x0 2 K there is u 2 U with

kx(t; x0; u)k < Me��t kx0k for all t � 0: (2.3)

Let " > 0. Then for every T > 0 there is a �nite set R = fu1; : : : ; urg � U such that
for every x0 2 K there is uj 2 S with

kx(t; x0; uj)k < e��t ("+M kx0k) : (2.4)

Proof. For every x0 2 K choose a control u 2 U with

kx(t; x0; u)k < Me��t kx0k for all t 2 [0; T ]:

By continuous dependence on initial values (as assumed for (2.2)) there is � with
0 < � < "=M such that for all y0 2 Rn with kx0 � y0k < � one has for all t 2 [0; T ]

kx(t; y0; u)k < Me��t kx0k �Me��t (kx0 � y0k+ ky0k)
< Me��t (� + ky0k)
< e��t ("+M ky0k) :

Now compactness of K shows that there is a �nite set R = fu1; : : : ; urg � U such
that for each y0 2 K there is uj 2 R satisfying for all t 2 [0; T ]

kx(t; y0; uj)k < e��t ("+M ky0k) .

We will introduce two ways to measure the information needed for stabilization
and begin with an entropy-like notion. Consider a compact set K � Rn of initial
states, and let � > 0;M > 1 and " > 0. For a time T > 0 we call R � U a
(T; ")-spanning set of controls if for all x0 2 K there is u 2 R with

kx(t; x0; u)k < e��t ("+M kx0k) for all t 2 [0; T ]: (2.5)

The minimal number of elements in such a set is

rstab(T; ") := minf#Rj R is (T; ")-spanningg: (2.6)

(Recall the convention at the end of the introduction.) Note that for "1 > "2 > 0,
any (T; "2)-spanning set is also (T; "1)-spanning. Lemma 2.2 shows that exponential
controllability condition (2.3) implies the existence of �nite (T; ")-spanning sets. We
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want to determine which information has to be transmitted through a digital com-
munication channel in order to identify a control function in such a �nite set S. The
elements can be encoded by symbols given by �nite sequences of 0�s and 1�s in the set

�k := f(s0s1s2:::sk�1) j si 2 f0; 1g for i = 0; 1; :::; k � 1g;

where k 2 N is the least integer greater than or equal to log2#R. Thus #R is
bounded above by 2k. Equivalently, the number of bits determining an element of
R is log2(2

k) = k. It will be convenient to use the natural logarithm instead of the
logarithm with base 2.

Definition 2.3. Let K be a compact set in Rn and � > 0;M > 1. Then the
(�;M)-stabilization entropy hstab(�;M;K) is de�ned by

hstab(�;M;K) = lim
"&0

lim
T!1

1

T
log rstab(T; "):

Remark 2.4. Naturally, the number rstab(T; ") depends also on �;M , and K
and on the considered control system. We omit these arguments.

The existence of the limit for "& 0 is obvious, since it equals the supremum over
all " > 0. (The value +1 is allowed.) Furthermore, the inequality hstab(�0;M 0) �
hstab(�;M) holds for � � �0 > 0 and M 0 � M > 1. If one would consider � = 0,
condition (2.5) just means that every trajectory starting in K remains in the ball
around the origin with radius "+M maxx2K kxk. In this case, the results on invariance
entropy from Kawan [21, 22, 23] would apply.

A second way of counting bits, di¤erent from entropy, is the following. Con-
sider a set of control functions de�ned on [0;1) which allow us to steer the system
asymptotically to the equilibrium x� = 0 satisfying the following conditions. Let
� > 0;M > 1; " > 0 and let  be a decreasing function on [0;1) with (0) = " and
limt!1 (t) = 0. For brevity, we call  an L"-function (note that continuity of  is
not required.) Let S � U be a set of of control functions such that for all x0 2 K
there is u 2 S with

kx(t; x0; u)k < (t) +Me��t kx0k for all t � 0. (2.7)

Then S is called (; ")-stabilizing for K. Thus in the "-neighborhood of the equilib-
rium, the decay given by the exponential rate � may slow down, but still convergence
holds for t!1. Let ST := fuj[0;T ] j u 2 Sg be the corresponding restrictions of the
controls in S. The bit rate on the time interval [0; T ] is de�ned as 1

T log#ST and the
required bit rate for stabilization using controls in S is

b(S) := limT!1
1

T
log#ST :

Definition 2.5. With the notions introduced above, the minimal bit rate for
(�;M)-stabilization at x� = 0 of a compact set K � Rn is

bstab(�;M;K) := lim
"&0

inf
2L"

inf
S
b(S);

where the inner in�mum is taken over all (; ")-stabilizing sets S � U of controls and
the outer in�mum is taken over all L"-functions .

If we would de�ne a minimal stabilization bit rate using the �xed L"-function
(t) := "e��t; t � 0, any (; ")-stabilizing set S would lead to (T; ")-spanning sets
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ST ; T > 0, and hence one could derive that the stabilization entropy is a lower bound.
However, in this case we cannot prove that the stabilization entropy hstab is an upper
bound (or merely that there exists a �nite upper bound); see Theorem 3.1.

The stabilization entropy hstab indicates how much the number of required con-
trol functions increases, when time increases. Here minimization is performed on each
interval [0; T ] separately. If one wants to enlarge the time interval where the expo-
nential decay holds, one may have to consider controls which, when restricted to the
smaller interval, are di¤erent from the earlier ones. This is in contrast to minimal bit
rates bstab, where restrictions to [0; T ] are considered for control functions de�ned on
[0;1). Thus, while stabilization entropy certainly merits its own interest, the minimal
bit rate bstab might appear more appealing from this point of view. The di¤erence
between these two concepts can also be seen by looking at them from a quantization
point of view. Let S be a (; ")-stabilizing set of controls such that for every T > 0
the set ST of restrictions to [0; T ] is �nite. Then de�ne for every u 2 ST

K(u; T ) := fx0 2 K j kx(t; x0; u)k < (t) +Me��t kx0k for all t 2 [0; T ]g:

The sets K(u; T ) form an open cover of K which may be viewed as a �nite quantiza-
tion. For T 0 > T , the same construction for ST 0 again yields a �nite quantization of
K which is obtained by re�ning the quantization at time T , since both are obtained
by restrictions of controls in S. In contrast, the quantization for T 0 > T obtained by
a (T 0; ")-spanning set of controls used for de�ning the entropy hstab is not related to
the quantization associated with a (T; ")-spanning set.

For general nonlinear control systems described by ordinary di¤erential equations,
a number of estimates from above and from below are available in Colonius [5]. In
the next section, only results in the linear case are cited.

3. Entropy for linear control systems. In this section several results on
entropy and minimal bit rates for stabilization are presented. In particular, entropy
in the presence of a compensator is discussed.

Consider linear control systems in Rn of the form

_x(t) = Ax(t) +Bu(t); u(t) 2 Rm; (3.1)

with matrices A 2 Rn�n and B 2 Rn�m.
The next theorem characterizes the stabilization entropy about the equilibrium

x� = 0 for linear control systems and gives an estimate for the stabilization bit rate.
Proofs are given in [5].

Theorem 3.1. Consider a linear control system of the form (3.1). Assume that
there are � > 0;M > 1 such that for every initial value 0 6= x0 2 Rn there is a control
u 2 U with

kx(t; x0; u)k < Me��t kx0k for all t � 0: (3.2)

For every compact set K � Rn with nonvoid interior the (�;M)-stabilization entropy
hstab and the minimal bit rate bstab of system (3.1) satisfy for � > �0 > 0

bstab(�
0;M;K) � hstab(�;M;K) =

X
Re�i>��

(�+Re�i); (3.3)

here summation is over all eigenvalues �i of A, counted according to their multiplicity,
with Re�i > ��. Furthermore,

inf
�>0

bstab(�;M;K) = inf
�>0

hstab(�;M;K) =
X

Re�i>0

Re�i:
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Remark 3.2. Formula (3.3) shows that in the linear case hstab(�;M;K) is
independent of K and of M > 1, large enough, and hence we may just write it as
hstab(�).

Remark 3.3. In a discrete time setting, a formula similar to (3.3) shows up in
Nair and Evans [25, Theorem 1] for a problem with random initial states.

Theorem 3.1 characterizes the stabilization entropy without any assumption on
how the stabilizing controls are generated. Now, a standard way to stabilize a system
relies on dynamic compensators. So suppose that the system is connected with a
dynamic compensator and the average bit rate for the communication from the system
to the compensator is restricted. What can we say about the entropy in this case?

More speci�cally, consider the problem to stabilize a system of the form

_x = Ax+Bu; y = Cx

using u = Fz with z generated by a compensator on the form

_z = Jz +Nu�Ky;

where J;K and N are matrices of appropriate dimensions. Suppose that there are a
feedback matrix F and a compensator such that the closed loop system given by�

_x
_z

�
=

�
A BF

�KC J +NF

� �
x
z

�
is exponentially stable (this holds, if (A;B) is stabilizable and (C;A) is detectable.)
In particular, this system can be constructed from a stabilizing state feedback F and
an observer with J = A+GC;K = G;N = B.

Then, what is the entropy for the transfer from the system to the compensator?
When the implementation of y = Cx is not possible, we have to replace y = Cx by
an input v(t) for the compensator. This yields the extended system�

_x
_z

�
=

�
A BF
0 J +NF

� �
x
z

�
+

�
0
�K

�
v(t): (3.4)

By stability of the closed loop system, this system satis�es for appropriate � > 0 the
exponential controllability condition (3.2). Hence, by Theorem 3.1, the entropy ĥstab
for �-stabilization of the extended system is given by

ĥstab(�) =
X

Re�i>��
(�+Re�i) +

X
Re�i>��

(�+Re�i);

where summation is over the eigenvalues �i of A with Re�i > �� and over the
eigenvalues �i of J +NF with Re�i > ��, respectively.

This entropy may be strictly larger than the stabilization entropy of the system
given by _x = Ax+Bu as shown by the following simple example.

Example 3.4. Consider the system given by

A =

�
0 1
1 0

�
; B =

�
1
0

�
; C = [1; 0]:

The system is controllable and observable with eigenvalues �1 and hence hstab(�) =
� + 1 for � 2 (0; 1). Stabilization with a dynamic observer and a stabilizing state
feedback gives rise to an extended system (3.4) of the form�

_x
_z

�
=

�
A BF
0 A+BF +GC

� �
x
z

�
+

�
0
�G

�
v(t):
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A direct computation shows that A + BF;A + GC; and A + BF + GC cannot all be
stable for any F and G and hence the entropy satis�es ĥstab(�) > hstab(�):

In fact, the problem to determine the minimal entropy of the extended system
is closely related to a classical problem in linear control: In general, one cannot �nd
a stable controller (of arbitrary order) for a stabilizable system. For single-input-
single-output systems, the paper Youla, Bongiorno and Lu [31] has shown that this is
possible if and only if the so-called parity interlacing condition on the zeros and poles
of the system holds.

This discussion illustrates that the stabilization entropy de�ned above is only a
lower bound for data rates. If additional conditions are imposed on how the control
functions are generated the entropy will, in general, increase.

4. Further work and open problems. It seems that the basic idea for entropy,
sketched in Section 1, can be brought to bear for many control problems. However,
for the precise problem formulation (the �entropy-zation�) as well as for its analysis,
considerable further work may have to be invested. In addition to the exponential
stabilization problem discussed above and invariance entropy, an entropy notion for
controlled invariant subspaces has been studied in Colonius and Helmke [8], Colonius
[6]. Here also extensions of Bowen�s classical results (Bowen [2]) on topological entropy
of linear �ows are needed which are given in Colonius, San Martin, da Silva [11]. In
the presence of an exosystem, entropy for stabilization problems is discussed in Colo-
nius [4]. Da Silva [12] has introduced invariance entropy for random control systems.
Invariance entropy for linear in�nite-dimensional systems (with �nite-dimensional un-
stable subspace) has been treated in Hoock [18]; again a characterization in terms of
the sum of the real parts of the unstable eigenvalues can be obtained.

Topological entropy of �ows is particularly relevant for nonlinear systems where
its positivity indicates complicated dynamics, and Kawan [21, 22, 23] could use related
techniques in the context of invariance entropy. For exponential stabilization entropy
of nonlinear control systems only �rst results are available in [5]. A further challenge is
to analyze minimal data rates and entropy associated with control systems comprised
of many subsystems.

As is well known, control systems may be viewed in the general framework of
semigroup actions. For example, if one considers piecewise constant controls the
corresponding solution maps form a semigroup acting on the state space. The notion
of invariance entropy can appropriately be modi�ed to apply to general topological
semigroup actions and some results are available in Colonius, Fukuoka, and Santana
[7].

Open problems also include the question if similar constructions may help in
�nding minimal bit rates and entropy for state estimation. Furthermore, a great deal
of interest in the concept of topological entropy for �ows comes from the fact that it
coincides with the supremum of the measure-theoretic entropies (with respect to all
invariant measures). An analogous construction for a control theoretic entropy is not
available.

Acknowledgement The last part of Section 3 is a result of discussions with a
number of colleagues during the Oberwolfach meeting on Control Theory in Febru-
ary/March 2012. Thanks to all of them.
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