
ENTROPY FOR EXTERNAL STABILITY OF LINEAR CONTROL
SYSTEMS�

FRITZ COLONIUSz

Abstract. For linear control systems, an entropy notion is introduced. It is associated with ex-
ponential stability of the output for every disturbance generated by an exosystem. This is motivated
by problems with digital communication constraints from the plant to the control.
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1. Introduction. This paper is concerned with minimal data rates for a problem
of external stability in linear control systems subject to disturbances generated by
an exosystem. In the context of classical geometric control theory, treatments of
similar problems are given in the monographs Wonham [13], Basile and Marro [1], and
Trentelman, Stoorvogel, Hautus [11]. The present paper concentrates on problems,
where the information on the states is available for the control only via a digital
communication channel; see Nair, Fagnani, Zampieri and Evans [10] for a survey. In
particular, quantization approaches have been proposed to model the information �ow
from the states to the controller. Nair, Evans, Mareels, and Moran [9] have introduced
the notion of topological feedback entropy, which may be viewed as a generalization
of the notion of topological entropy in the theory of dynamical systems as presented
in Walters [12]. The present note is based on concepts from Colonius and Kawan
[5, 6], where invariance entropy for controlled invariance has been studied, and from
Colonius and Helmke [4], Colonius [2]. This is based on counting the exponential
growth rate of the number of required open loop controls as time increases to in�nity.
In Section 2, the approach is explained. Section 3 shows equivalence to an entropy
for the uncontrolled system and presents a characterization in terms of eigenvalues.

2. Problem formulation. We consider a linear control system together with
an exosystem generating disturbances acting on the system. Let the exosystem in X1
be given by

_x1(t) = A1x1(t);

while the plant on X2 and its output are given by

_x2(t) = A3x1(t) +A2x2(t) +B2u(t); z(t) = C2x2(t):

Here X1;X2 and Z are �nite dimensional normed spaces and A1 : X1 ! X1; A2 :
X2 ! X2; A3 : X1 ! X2; B2 : Rm ! X2; C2 : X1 ! Z are linear. For de�niteness,
let dimX1 = n1 and dimX2 = n2 and for simplicity, identify X1 and X2 with the
subspaces X1 � f0g and f0g � X2, respectively, of X := X1 � X2. It is convenient to
rewrite this as a system in X with

A :=

�
A1 0
A3 A2

�
; B :=

�
0
B2

�
; C := [0; C2];
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so that we get

_x(t) = Ax(t) +Bu(t); z(t) = Cx(t) (2.1)

with trajectories '(t; x1; x2; u) = ('1(t; x1); '2(t; x1; x2; u)); t � 0. We are interested
in the problem to decouple the output from the disturbances, i.e., to make the output
z(t) independent of the disturbances generated by the exosystem. Suppose u(t) � 0.
Then, due to linearity, this amounts to the requirement, that for all initial values
x01 2 X1

C2

Z t

0

e(t�s)A2A3e
sA1x01ds = 0; t � 0:

Using state feedback u = F2x2 one can replace A2 by A2 + B2F2. However, if the
present state (or measured output) is not available for control due to digital com-
munication constraints, one may not be able to guarantee that the output vanishes
identically. Instead, one has to relax this condition. We will require the following
external stability property: the output z(t) should be exponentially stable for every
disturbance x1(t) = '1(t; x

0
1) determined by an initial value x

0
1. More precisely, let

� > 0;M > 1 and consider the following problem:
Find controls u such that for every x01 2 X1 one has



CetAx01 + Z t

0

Ce(t�s)ABu(s)ds





 �Me��t 

x10

 ; t � 0; (2.2)

Note that the left hand side equals



C2'2(t; x01; u)

 = 



Z t

0

C2e
A2(t�s)

�
A3e

sA1x01 +B2u(s)
�
ds





 :
Thus the plant is supposed to be initially in equilibrium, i.e., x2(0) = x02 = 0. The con-
trols u may be generated by a compensator using measured outputs, see e.g. Trentel-
man, Stoorvogel, Hautus [11, Section 9.1] for a related discussion.

We will be concerned with problems, where the state or the observed outputs are
not continually available for the controller and, assuming that the problem is solvable,
we will discuss the exponential growth rate of the number of required control functions
as time tend to in�nity. This leads us to the following entropy notion.

Definition 2.1. Fix � > 0 andM > 1 and let K1 � X1 be compact. For T; " > 0
a set R � C([0; T ];Rm) of controls is (T; ")-spanning if for all y1 2 K1 there is u 2 R
such that for all t 2 [0; T ]

kC2'2(t; y1; u)k < e��t ["+M ky1k] : (2.3)

Let rext(T; ";K1) be the minimal cardinality of such a (T; ")-spanning set. The exter-
nal stabilization entropy is de�ned by taking limits and the supremum over all compact
K1 � X1

hext(K1; �;M) := lim
"!0

lim
T!1

1

T
log rext(T; ";K1); hext(�;M) := suphext(K1; �;M):

Remark 2.2. The number rext(T; ";K1) depends also on � andM and, naturally,
on the considered control system. Note that also hext depends on the �ow �t = etA and
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the output map C. Where convenient, we take the freedom to include those arguments
which are relevant in the considered context. Furthermore, there may not exist �nite
(T; ")-spanning sets (in particular, there may not exist any (T; ")�spanning set). In
this case, we set rext(T; ";K1) = 1. Analogous conventions also apply to similar
notions introduced below.

We will relate the external stabilization entropy to a variant of topological entropy
for the uncontrolled perturbed system _x = Ax; z = Cx. i.e.,

_x1(t) = A1x1(t) (2.4)

_x2(t) = A3x1(t) +A2x2(t); z(t) = C2x2(t):

This entropy notion refers to exponential convergence of the output and, again, it
only refers to initial values in X1.

Definition 2.3. Fix � > 0 andM > 1 and let K1 � X1 be compact. For T; " > 0
a subset R = fx11; :::; xr1g � K1 is (T; ")-spanning if for every y1 2 K1 there is x

j
1 2 R

such that


C2 h'2(t; y1; 0)� '2(t; xj1; 0)i


 < e��t ("+M ky1k) for all t 2 [0; T ]: (2.5)

Let rpart(T; ";K1) be the minimal cardinality of such a (T; ")-spanning set and de�ne
the partial exponential entropy by taking limits and the supremum over all compact
K1 � X1

h
part
(K1; �;M) := lim

"!0
lim
T!1

1

T
log r

part
(T; ";K1); hpart(�;M) = suphpart(K1; �;M):

Remark 2.4. We may assume that every minimal (T; ")-spanning set R satis�es
the following additional condition: for every y1 2 K1 there is x

j
1 2 R such that


y1 � xj1


 < ". In fact, we can add �nitely many initial points to a minimal (T; ")-

spanning set R such that this condition is satis�ed. Their number does not depend on
T . Hence the limit for T !1 does not change, when we add these initial points.

Remark 2.5. We assume that for every x01 2 X1 there is a control u satisfying
(2.2). Then, by compactness of K1 and continuity with respect to y1, there are �nite
(T; ")-spanning sets for the external stabilization entropy. Analogous arguments can
be applied to the partial exponential entropy.

3. External stability. This section shows that the entropy notions introduced
above are equivalent and presents estimates in terms of eigenvalues. First, the relation
between these two notion of entropy is clari�ed by the following theorem which uses
linearity in an essential way.

Theorem 3.1. Fix � > 0 and M > 1 and assume that for every x01 2 X1 there
is a control u satisfying (2.2). Let K1 � X1 be compact. Then

hext(K1; �; 2M) � hpart(K1; �;M) and hpart(K1; �;M) � hext(K1; �; 2M):

Proof. (i) Fix T; " > 0. Consider a �nite (T; ")-spanning set R = fu1; :::; urg
of controls with minimal cardinality r = rext(T; ";K1) for the external stabilization
entropy. Then for every y1 2 K1 there is uj 2 R such that

kC2'2(t; y1; uj)k < e��t ("+M ky1k) for all t 2 [0; T ]:



4 FRITZ COLONIUS

By minimality, we can for every uj pick x
j
1 2 K1 such that


C2'2(t; xj1; uj)


 < e��t �"+M 


xj1


� for all t 2 [0; T ]:

Then one �nds for all y1 2 K1 an element x
j
1 2 K1 such that for all t 2 [0; T ]


C2 h'2(t; y1; 0)� '2(t; xj1; 0)i


 = 


C2 h'2(t; y1; uj)� '2(t; xj1; uj)i




� e��t ("+M ky1k) + e��t
�
"+M




xj1


�
� e��t

�
2"+ 2M ky1k+M




xj1 � y1


�
< e��t ("(2 +M) + 2M ky1k) :

Here we have also used Remark 2.4. This shows that R := fx11; :::; xr1g is a (T; "(2 +
M))-spanning set for the partial exponential entropy, and hence

rpart(T; "(2 +M);K1; �; 2M) � rext(T; ";K1; �;M):

Letting T tend to in�nity and then " tend to 0, one obtains

h
part
(K1; �; 2M) � hext(K1; �;M):

(ii) For the second inequality, let again T; " > 0. Consider a minimal (T; ")-
spanning set R = fx11; :::; xr1) � K1 for the partial exponential entropy which means
that for all y1 2 K1 there is j 2 f1; : : : ; rg; r = rpart(T; ";K1; �;M), such that for all
t 2 [0; T ]


C2 h'2(t; y1; 0)� '2(t; xj1; 0)i


 < e��t ("+M ky1k) for all t 2 [0; T ]:

By assumption we can assign to each xj1 a control uj such that


C2'2(t; xj1; uj)


 < e��t �"+M 


xj1


� for all t 2 [0; T ]:
Let R := fu1; : : : ; urg. Using linearity and Remark 2.4 we obtain that for every
y1 2 K1 there is uj such that for all t 2 [0; T ]

kC2'2(t; y1; uj)k �



C2 h'2(t; y1; uj)� '2(t; xj1; uj)i


+ 


C2'2(t; xj1; uj)




� e��t ("+M ky1k) + e��t
�
"+M




xj1


�
� e��t

�
2"+ 2M ky1k+M




xj1 � y1


�
� e��t ("(2 +M) + 2M ky1k) :

Hence R is (T; "(2 +M); 2M)-spanning for the external stabilization entropy and it
follows that

rext(T; (2 +M);K1; �; 2M) � rpart(T; ";K1; �;M) for all T; " > 0:

This yields hext(K1; �; 2M) � hpart(K1; �;M).
Next we show that we may assume that all eigenvalues of A have positive real

part. Decompose X into the invariant subspaces, X = X�;� � X+;�, where X�;�
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is the sum of all real generalized eigenspaces corresponding to eigenvalues with real
part equal to or less than �� and X+;� is the sum of all real generalized eigenspaces
corresponding to eigenvalues with real part greater than ��. We denote the corre-
sponding projections of X by ��;� and �+;�, respectively, and let ��;� and �+;� be
the associated restrictions of �t = eAt.

Proposition 3.2. Let K1 � X1 be compact. Then the partial exponential en-
tropies hpart(K1;�) and hpart(�+;�K1;�

+;�) (both with output map C) coincide.
Proof. The restriction ��;� has the property, that for a polynomial p(t)

��;�t (x� y)



 � p(t)e��t kx� yk :
hence the partial exponential entropy here vanishes. Furthermore, the products of
spanning sets for both parts yields spanning sets for the total system, hence

hpart(K1;�) � hpart(�+;�K1;�
+) + hpart(�

�;�K1;�
0;�) = hpart(�

+;�K1;�
+):

and clearly, hpart(�+;�K1;�
+) � hpart(K1;�).

The next proposition shows that only part of the state space X is relevant for
the partial exponential entropy. Denote the smallest A2-invariant subspace of X2
containing ImA3 by hA2 jImA3 i and denote the largest A2-invariant subspace of
ImA3 \ kerC2 by ker(A2; ImA3 \ kerC2). Let the natural projection be �,

� : hA2 jImA3 i ! hA2 jImA3 i = ker(A2; ImA3 \ kerC2) =: �X2:

Then � induces on X1 � �X2 the system

_x1(t) = A1x1(t) (3.1)

d

dt
x2(t) = �A2x2(t) + �A3x1(t); z(t) = C2x2(t):

Proposition 3.3. For every compact K1 � X1 the partial exponential entropies
of system (2.2) on X1 � X2 and of the induced system given by (3.1) on X1 � �X2
coincide,

hpart(K1) = hpart(K1):

In view of this proposition we will in the following consider the induced �ow on
X1� �X2. We recall some facts on topological entropy of linear �ows. For a linear map
A : X ! X on an n-dimensional normed vector space X , let �t := etA and let K � X
be compact. Here a set R � K in X is called (T; ")-spanning if for every x 2 K there
is y 2 R such that for all t 2 [0; T ] one has

k�tx� �tyk =


etA(x� y

 < ":

Denote the minimal cardinality of such a (T; ";K)-spanning set by rtop(T; ";K) .
Definition 3.4. With the notation above, the topological entropy of � with

respect to compact sets K in a subspace V is de�ned by

htop(K) := lim
"&0

lim
T!1

1

T
log rtop(T; ";K); htop(V ) := sup

K�V
htop(K):

We recall the following results from Colonius, San Martin, da Silva [8], see also
Colonius [3].
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Theorem 3.5. Consider a linear map A : X ! X ;dimX = n, with �ow �t = etA

and assume that � is hyperbolic. Let V be a k-dimensional subspace. Then the
topological entropy of V is

htop(V;�) =
lX
i=1

kimax(0; �i):

The expression on the right hand side is determined in the following way: Let Li; i =
1; : : : ; l, be the Lyapunov spaces of A corresponding to the Lyapunov exponents �i.
For k 2 f1; : : : ; ng de�ne the index set

I(k) = f(k1; : : : ; kl) j k1 + : : :+ kl = k and 0 � ki � dimLig : (3.2)

Then there is a unique l-tuple (k1; :::; kl) 2 I(k) such that the omega-limit set !(V )
of the subspace V in the Grassmannian GkX is contained in

Gk1L1 � : : :�GklLl; (k1; : : : ; kl) 2 I(k); (3.3)

which denotes the set of all k-dimensional subspaces V k � X with dim(V k \ Li) =
ki; i = 1; : : : ; l.

Returning to the partial entropy, consider the induced �ow ��t = e
t �A on X1 � �X2

with

�X2 := hA2 jImA3 i = ker(A2; ImA3 \ kerC2):

We will show that the partial exponential entropy is bounded above by the topological
entropy of X1 for the induced �ow ���t = e

t( �A+�I).
Theorem 3.6. The partial exponential entropy of (2.1) and the topological en-

tropy of X1 for the induced system on X1 � �X2 satisfy

hpart(�;M) � htop(X1; ���) =
X

ki(�+ �i); (3.4)

where summation is over the real parts �i > �� of the eigenvalues of �A and the
ki are given by the the set of the form (3.3) in the n1-Grassmannian Gn1(X1 � �X2)
containing the !-limit set !(X1) with respect to the induced �ow ��t.

Proof. Let T; " > 0 and consider a (T; ")-spanning set R = fx11; :::; xr1g � K1

with minimal cardinality r = rtop(T; ";K1) for the topological entropy of the �ow
���t = e

t( �A+�I). For every y1 2 K1 there exists x
j
1 2 R such that for all t 2 [0; T ]

e�t



et �A(y1 � xj1)


 = 


et( �A+�I)(y1 � xj1)


 < ";

and hence



et �A(y1 � xj1)


 < e��t". In particular, the second component satis�es


'2(t; y1 � xj1; 0)


 = 



Z t

0

e(t��)
�A2�A3

h
'1(�; y1)� '1(t; xj1)

i
d�





 < e��t":
Thus R is also (T; ")-spanning for the partial exponential entropy. It follows that the
minimal cardinality rtop(T; ";K1; ��

�) for the topological entropy is greater than or
equal to the minimal cardinality rpart(T; ";K1) for the partial exponential entropy.
Then take the limit superior for T ! 1 and let " tend to 0. Finally, the expression
for the topological entropy follows from Theorem 3.5.
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In the following we will introduce conditions which ensure equality in (3.4). In
view of Proposition 3.2 and Proposition 3.3 we can assume that all eigenvalues of
A have real parts greater than �� and we can replace X2 by the quotient space
�X2 = hA2 jImA3 i = ker(A2; ImA3 \ kerC2) which we again denote by X2.
We impose the following assumption on volumes: Let � : X!X= kerC be the

natural projection. Take an orthonormal basis v1; :::; vn1 of X1 (we may assume
that X is endowed with an inner product.) There is 
 > 0 such that for a se-
quence ti ! 1 the absolute value of the volume of the parallelepiped spanned by
�(etiAv1); :::; �(e

tiAvn1) � X= kerC is bounded below by a positive constant times
the absolute value of the volume of the parallelepiped spanned by etiAv1; :::; etiAvn1 .
More formally, we require:

There is an orthonormal basis v1; :::; vn1 of X1 such that some 
 > 0 and a
sequence ti !1

�(etiAv1) ^ � � � ^ � �etiAvn1�

 � 
 

etiAv1 ^ � � � ^ etiAvn1

 : (3.5)

Note that this assumption can only hold, if dimX= kerC = dimX2= kerC2 � dimX1.
Proposition 3.7. Assume that condition (3.5) holds. Then the partial exponen-

tial entropy of (2.1) is given by

hpart(�;M) = htop(X1; ���):

Proof. A consequence of (3.5) is that

lim sup
t!1

1

t
log


�(etAv1) ^ � � � ^ � �etAvn1�

 � lim sup

t!1

1

t
log


etAv1 ^ � � � ^ etAvn1

 :

(3.6)
Let P be the parallelepiped spanned by v1; :::; vn1 . Then the set e

tAP is the par-
allelepiped spanned by etAv1; � � � ; etAvn1 . The projected set �(etAP ) is the par-
allelepiped spanned by �(etAkv1); � � � ; �

�
etAkvn1

�
. By Colonius and Kliemann [7,

Theorem 5.2.5] one �nds

lim
t!1

1

t
log


etAv1 ^ � � � ^ etAvn1

 = lX

i=1

ki�i;

where (k1; :::; kl) is an element of the index set I(k) given by (3.2). In order to
relate the volume growth to the partial exponential entropy, we argue similarly as
in Colonius, San Martin, da Silva [8, Proposition 4.1]: For t > 0 the n1-dimensional
volume of �(etAP ) satis�es

volk(�(etAK)) � volk(�(etAP )) =


�(etAv1) ^ � � � ^ � �etAvn1�

 :

Let k1 := maxi=1;:::;n1 kvik, �x " > 0; T > 0, and consider a (T; ")-spanning set R =
fx11; :::; xr1g � P of minimal cardinality r = rpart(T; "; P ) for the partial exponential
entropy. Then we claim that the set �(eTAP ) is contained in the union of r balls
B(�(eTAxj); e

��t("+ k1) of radius e��t("+ k1) in X= kerC,

B(�(eTAxj); e
��t("+ k1)) = fz 2 X= kerC j



z � �(eTAxj)

 < e��t("+ k1)g:
In fact, by De�nition 2.3, for every y1 2 P there is xj1 2 R such that


C2 h'2(t; y1; 0)� '2(t; xj1; 0)i


 < e��t ("+M ky1k) for all t 2 [0; T ]:
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This is equivalent to


C2 h'2(t; y1 � xj1; 0)i


 = dist('(t; y1 � xj1; 0); kerC) = 


� heAt(y1 � xj1)i


 ;
where the last expression denotes the norm in the quotient space X= kerC. Hence for
every y1 2 P there is xj1 2 R such that


� heAt(y1 � xj1)i


 < e��t ("+M ky1k) for all t 2 [0; T ]:

This shows the claim. Each such ball has volume bounded by c ("+Mk1))n2 , where
c > 0 is a constant: Thus

voln1(�(eTAP )) � r � c ("+Mk1))n2 :

This yields

log r = log rpart(T; "; P ) � log voln1(�(eTAP ))� log [c ("+Mk1))n2 ]
= log



�(eTAv1) ^ � � � ^ � �eTAvn1�

� log [c ("+Mk1))n2 ] ;
and hence

lim sup
T!1

1

T
log rpart(T; "; P ) � lim sup

T!1

1

T
log


�(eTAv1) ^ � � � ^ � �eTAvn1�

 :

Together with (3.6) one obtains the assertion for "! 0.

4. Conclusions. This paper introduces a way to measure the minimal informa-
tion that is needed in order to obtain external stability in linear control systems. Here
the exponential growth rate of the number of open loop controls is measured which
allow us to obtain exponential stability of the output for every disturbance generated
by an exosystem. Theorem 3.6 provides an upper bound in terms of topological en-
tropy of an induced di¤erential equation. This bound can be expressed in terms of
the real parts of certain eigenvalues of A.
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