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Abstract. Hyperbolic affine-linear flows on vector bundles possess unique

bounded solutions on the real line. Hence they are topologically skew conjugate
to their linear parts. This is used to show a classification of inhomogeneous

bilinear control systems.

1. Introduction. The main subject of this paper are topological conjugacies of
affine-linear control systems in Rd. In particular, we will generalize the classical
result (see e.g. Robinson [8]) that, in case of hyperbolicity, two linear autonomous
differential equations are topologically conjugate if and only if the dimensions of
the stable subspaces coincide. Here we consider control systems of the form

ẋ = A0x+ a0 +

m∑
i=1

ui(t)[Aix+ ai], u = (u1, ..., um) ∈ U , (1)

where Ai are in the set gl(d,R) of real d × d-matrices, ai ∈ Rd, and U := {u ∈
L∞(R,Rm), u(t) ∈ U for all t ∈ R} is the set of admissible control functions with
values in a set U ∈ Rm. The solutions are in the Carathéodory sense; i.e. they
satisfy the corresponding integral equation. We denote the solutions with initial
condition x(0) = x0 ∈ Rd by ψ(t, x0, u), t ∈ R.

Frequently, systems of this form are called inhomogeneous bilinear control sys-
tems in contrast to the homogeneous case where ai = 0 for all i (D. Elliott [7]
proposes to call systems of the form (1) ‘biaffine’). Control system (1) defines a
dynamical system (or flow) on U × Rd by

Ψ : R× U × Rd → U × Rd, Ψt(u, x) = (θtu, ψ(t, x, u)), (2)

where (θtu)(s) := u(t + s), s ∈ R, is the shift on U . In fact, Ψ satisfies the flow
properties Ψ0 = id and Ψt+s = Ψt◦Ψs for t, s ∈ R. If the control range U is compact
and convex, the set U of admissible control functions is a compact metrizable space
endowed with the weak∗ topology of L∞ and Ψ is a continuous skew product flow
(cf. Colonius and Kliemann [5] for details on this construction). We require that
topological conjugacies of such flows respect the skew product structure; i.e., also
for the topological conjugacies on the vector bundles U × Rd the first component
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should be independent of the second component; cf. also the monograph Cong [6]
which includes an exposition of equivalences and normal forms for nonautonomous
linear differential equations (emphasizing results based on the ergodic theory). For
linear skew product flows (which cover the homogeneous case with ai = 0 for all i in
(1)), such topological skew conjugacies have been characterized by Ayala, Colonius,
and Kliemann in [3]. Here we generalize their results to the affine case. Note
that linear control systems ẋ = Ax + Bu do not define linear flows, but affine
flows. The work by Baratchart, Chyba, and Pomet [4] uses a similar notion of
conjugacy for control systems (cf. Remark 5). This paper also contains a discussion
of various conjugation notions for control systems. Here we only note that our
notion of conjugacy is different from the notion of state equivalence, where the state
transformations are not allowed to depend on the control functions (cf. Agrachev
and Sachkov [1, Section 9.2].)

In Section 2, we discuss in the more general context of affine-linear flows on
vector bundles the existence of unique solutions e0 which are bounded on the real
line; this holds provided that the flows are hyperbolic. Here we rely on methods
from Aulbach and Wanner [2], where general nonautonomous differential equations
of Carathéodory type are treated. This is used to prove that hyperbolic affine-
linear flows are topologically skew conjugate to their linear part provided that an
additional continuity property holds. In Section 3 we show that control systems of
the form (1) define affine-linear skew product flows and that they are topologically
skew conjugate to their homogeneous parts. In particular, using the classification
for homogeneous bilinear control systems from [3], we obtain a classification for
these inhomogeneous bilinear control systems.

2. Bounded solutions for affine-linear flows. The purpose of this section is
to show that for hyperbolic affine-linear flows there exist unique bounded solutions
depending continuously on the base points. Then skew conjugacy is characterized.

We start by defining affine-linear flows on vector bundles. Recall that a linear
skew product flow Φ = (θ, ϕ) on a vector bundle B ×Rd with compact metric base
space B is a continuous map

Φ : R×B × Rd → B × Rd

with the flow properties Φ0 = id and Φt+s = Φt ◦ Φs for t, s ∈ R, and

Φt(b, x) = (θtb, ϕ(t, b, x)) for (t, b, x) ∈ R×B × Rd,

where θ is a continuous flow on the base space B and ϕ(t, b, x) is linear in x; i.e.
ϕ(t, b, α1x1 + α2x2) = α1ϕ(t, b, x1) + α2ϕ(t, b, x2) for α1, α2 ∈ R and x1, x2 ∈ Rd.

Definition 2.1. Let B × Rd be a vector bundle with compact metric base space
B. A continuous map Ψ = (θ, ψ) : R× B × Rd → B × Rd is called an affine-linear
Carathéodory skew product flow on B × Rd if there are a linear skew product flow
Φ = (θ, ϕ) and a function f : B → L∞(R,Rd) such that f satisfies

f(b, t+ s) = f(θs(b), t) for all b ∈ B and almost all t, s ∈ R, (3)

and for all (t, b, x) ∈ R×B × Rd

Ψt(b, x) = Φt(b, x) +

∫ t

0

Φt−s(θsb, f(b, s))ds. (4)



CONJUGACY FOR AFFINE SYSTEMS AND FLOWS 849

Here we write f(b, s) := f(b)(s), s ∈ R. For brevity, we call the flows defined
above just affine-linear flows. The base flows of Ψ and Φ coincide and the integral
in (4) is a Lebesgue integral in the Rd-component only. Hence, in terms of ψ, this
equation means

ψ(t, b, x) = ϕ(t, b, x) +

∫ t

0

ϕ(t− s, θsb, f(b, s))ds, (5)

and the flow property of Ψ is expressed by the cocycle property

ψ(t+ s, b, x) = ψ(t, θsb, ψ(s, b, x)).

The following proposition shows that Definition 2.1, in fact, defines a flow.

Proposition 1. Let Ψ be an affine-linear flow as defined above. Then Ψ satisfies
the flow properties

Ψ0 = id and Ψt+s = Ψt ◦Ψs for t, s ∈ R.

Proof. The property Ψ0 = id is obvious and one computes

Ψt+s(b, x)

= Φt+s(b, x) +

∫ t+s

0

Φt+s−τ (θτ b, f(b, τ))dτ

= Φt ◦ Φs(b, x) +

∫ s

0

Φt+s−τ (θτ b, f(b, τ))dτ +

∫ t+s

s

Φt+s−τ (θτ b, f(b, τ))dτ

= Φt ◦ Φs(b, x) +

∫ s

0

Φt ◦ Φs−τ (θτ b, f(b, τ))dτ +

∫ t

0

Φt−τ (θτ+sb, f(b, τ + s))dτ

= Φt ◦ Φs(b, x) +

∫ s

0

Φt ◦ Φs−τ (θτ b, f(b, τ))dτ +

∫ t

0

Φt−τ (θτ+sb, f(θsb, τ))dτ

= Φt(Ψs(b, x)) +

∫ t

0

Φt−τ (θτ+sb, f(θsb, τ))dτ

= Ψt(Ψs(b, x)).

Remark 1. Continuity of the map Ψ defined in (4) is equivalent to the property
that the inhomogeneous term

a(t, b) :=

∫ t

0

Φt−s(θsb, f(b, s))ds, t ∈ R, b ∈ B, (6)

is continuous. Sufficiency follows from continuity of Φ, necessity follows by setting
x = 0 in (4).

Remark 2. In Definition 2.1, the range of the map f is taken as L∞(R,Rd). This
is due to our intention to treat control system (1) with bounded control range
U . Certainly, the consideration of affine-linear flows with other ranges of the affine
term f makes sense; e.g. one could require that the values of f are locally integrable
functions. Furthermore, consideration of general vector bundles, which only locally
are products, is certainly worthwhile.

Next we clarify the relation between the homogeneous equation described by the
linear flow Φ and the inhomogeneous equation.
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Lemma 2.2. Let Ψ be an affine-linear flow on the vector bundle B×Rd and consider
initial values (b, x1), (b, x2) ∈ B × Rd. Then the difference of the corresponding
solutions is a solution of the homogeneous system with initial value (b, x1 − x2) ∈
B × Rd; i.e. it satisfies

Ψt(b, x1)−Ψt(b, x2) = Φt(b, x1 − x2) for all t ∈ R.

Proof. This is immediate from the definition (4) and linearity of Φt(b, x) in the
second argument.

The next lemma, which is a modification of Aulbach and Wanner [2, Lemma
3.2], shows existence and continuous dependence of bounded solutions provided
that exponential stability holds. We start with the following notational remarks
and assumptions.

For an affine-linear flow (4) suppose that the bundle B ×Rd admits a decompo-
sition into the Whitney sum of two vector subbundles

B × Rd = V1 ⊕ V2, (7)

where V1 and V2 are invariant under the linear flow Φ. Thus for every b ∈ B we
have a decomposition

Rd = V1
b ⊕ V2

b

into linear subspaces V1
b and V2

b which have dimensions independent of the base
point b ∈ B. We identify {b} × Vib with Vib and note that the linear flow Φ leaves
the subbundles invariant in the following sense:

Φt(b, x) ∈ Viθtb for x ∈ Vib and t ∈ R.

We denote the restricted linear flows on Vi by Φit and write
∥∥Φ1

t (b, ·)
∥∥ for the norm

of the linear map x 7→ ϕ1
t (b, x) : V1

b → Viθtb. Decompose the affine term accordingly,

f(b, s) = f1(b, t) + f2(b, t) (8)

with f i(b, t) ∈ Vib, t ∈ R, b ∈ B. If f i satisfies property (3), then Vi is also invariant
under the affine-linear flow Ψi defined by

Ψi
t(b, x) = Φit(b, x) +

∫ t

0

Φit−s(b, f
i(b, s))ds. (9)

Lemma 2.3. Consider the affine-linear flow (4) and assume that the following
conditions are satisfied:

(i) the linear part Φ of Ψ admits a decomposition (7) into invariant subbundles
V1 and V2, where V1 is stable: there are constants α > 0 and K ≥ 1 such for the
restricted flow Φ1 on V1∥∥Φ1

t (b, ·)
∥∥ ≤ Ke−αt for all t ≥ 0 and all b ∈ B; (10)

(ii) the affine term f1 defined by (8) satisfies property (3), and there is M > 0
with ∥∥f1(b)

∥∥
∞ ≤M for all b ∈ B. (11)

Then for every b ∈ B there is a unique bounded solution e1(b, t), t ∈ R, for the
flow Ψ1.

If the map

b 7→
∫ 0

−∞
ϕ1(−s, θsb, f1(b, s))ds : B → Rd (12)

is continuous, then the map e1 : B × R→ Rd is continuous.
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Proof. The proof consists of two steps.
(I) The linear flow Φ has only the trivial bounded solution on R. In fact, let

ϕ(t, b, x) be a bounded solution on R. Then for t ≥ 0

‖x‖ = ‖ϕ(0, b, x)‖ = ‖ϕ(t, θ−tb, ϕ(−t, b, x))‖
≤
∥∥Φ1

t (θ−tb, ·)
∥∥ ‖ϕ(−t, b, x)‖

≤ Ke−αtsups∈R ‖ϕ(s, b, x)‖ .

The right hand side converges to 0 for t→∞ and hence x = 0 follows.
(II) Now suppose that f1(b, t) is given by (8). Uniqueness of the bounded solution

follows immediately from step (I), since by Lemma 2.2 the difference of two bounded
solutions is a bounded solution of the homogeneous equation. In order to show
existence, define

e1 : B × R→ Rd by e1(b, t) :=

∫ t

−∞
ϕ1(t− s, θsb, f1(b, s))ds. (13)

Note that the integral indeed exists, since for all b ∈ B and s ≤ t∥∥ϕ1(t− s, θsb, f1(b, s))
∥∥ ≤ ∥∥Φ1

t−s(θsb, ·)
∥∥ sup{

∥∥f1(b, s)
∥∥} ≤ KMeα(t−s).

In order to show the continuity property, fix t0 ∈ R and b0 ∈ B. Then, denoting
the characteristic function of the interval (−∞, t] by χ(−∞,t], one finds∣∣e1(b, t)− e1(b0, t0)

∣∣
=

∣∣∣∣∫ t

−∞
ϕ1(t− s, θsb, f1(b, s))ds−

∫ t0

−∞
ϕ1(t0 − s, θsb0, f1(b0, s))ds

∣∣∣∣
≤
∣∣∣∣∫

R
χ(−∞,t](s)ϕ

1(t− s, θsb, f1(b, s))ds−
∫
R
ϕ1(t0 − s, θsb, f1(b, s))ds

∣∣∣∣
+

∣∣∣∣∫ t0

0

ϕ1(t0 − s, θsb, f1(b, s))ds−
∫ t0

0

ϕ1(t0 − s, θsb0, f1(b0, s))ds

∣∣∣∣
+

∣∣∣∣∫ 0

−∞
ϕ1(t0 − s, θsb, f1(b, s))ds−

∫ 0

−∞
ϕ1(t0 − s, θsb0, f1(b0, s))ds

∣∣∣∣
For (t, b) → (t0, b0), the first summand converges to 0 by Lebesgue’s theorem on
dominated convergence, since

χ(−∞,t](s)ϕ
1
t−s(θsb, f

1(b, s))→ χ(−∞,t0](s)ϕ
1
t0−s(θsb0, f

1(b0, s)) for all t, s,

and the integrands are bounded. The second summand converges to 0 by the same
arguments. The third summand equals∣∣∣∣∫ 0

−∞
ϕ1(t0, b, ϕ

1(−s, θsb, f1(b, s)))ds−
∫ 0

−∞
ϕ1(t0, b0, ϕ

1(−s, θsb0, f1(b0, s)))ds

∣∣∣∣
=
∣∣∣ϕ1(t0, b,

∫ 0

−∞ϕ
1(−s, θsb, f1(b, s))ds)− ϕ1(t0, b0,

∫ 0

−∞ϕ
1(−s, θsb0, f1(b0, s))ds)

∣∣∣ .
Then the continuity assumption for the map (12) together with continuity of ϕ1

shows that this converges to 0.
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Now let us show that the function e1(b, t) defined in (13) is a solution for the
flow Ψ1. In fact, formula (4) is satisfied for f1, since

e1(b, t) =

∫ t

−∞
ϕ1(t− s, θsb, f1(b, s))ds

=

∫ t

0

ϕ1(t− s, θsb, f1(b, s))ds+

∫ 0

−∞
ϕ1(t− s, θsb, f1(b, s))ds

=

∫ t

0

ϕ1(t− s, θsb, f1(b, s))ds+ ϕ1(t, b,
∫ 0

−∞ϕ
1(−s, θsb, f1(b, s))ds)

=

∫ t

0

ϕ1(t− s, θsb, f1(b, s))ds+ ϕ1(t, b, x)

for

x := e(b, 0) =

∫ 0

−∞
ϕ1(−s, θsb, f1(b, s))ds.

Next we generalize this result to hyperbolic systems.

Corollary 1. Consider the affine-linear flow Ψ in (4) and assume that the following
conditions are satisfied:

(i) the linear part Φ of Ψ is hyperbolic. Thus it admits a decomposition (7) into
invariant subbundles V1 and V2, where V1 is stable and V2 is unstable such that the
restrictions Φ1 and Φ2 of Φ to V1 and V2, respectively, satisfy for constants α > 0
and K1,K2 ≥ 1 and for all b ∈ B∥∥Φ1

t (b, ·)
∥∥ ≤ K1e

−αt for t ≥ 0 and
∥∥Φ2

t (b, ·)
∥∥ ≤ K2e

αt for t ≤ 0;

(ii) the affine terms f1 and f2 defined by (8) satisfy property (3), and there is
M > 0 with

‖f(b)‖∞ ≤M for all b ∈ B.
Then for every b ∈ B there is a unique bounded solution e(b, t), t ∈ R, for the

flow Ψ.
If the maps B → Rd

b 7→
∫ 0

−∞
ϕ1(−s, θsb, f(b, s))ds and b 7→

∫ 0

−∞
ϕ2(s, θ−sb, f(b,−s))ds (14)

are continuous, then the map e : R×B → Rd is continuous.

Proof. Since
∥∥f i(b, t)∥∥ ≤ ‖f(b, t)‖, property (11) holds for f1 and f2. Hence Lemma

11 implies the existence of unique bounded solutions e1(t, b) t ∈ R, b ∈ B. Applying
this lemma to the time inverse of Ψ2, one also finds unique bounded solutions
e2(t, b). This yields bounded solutions

e(b, t) := e1(b, t) + e2(b, t)

for Ψ. Conversely, a bounded solution for Ψ projects down to bounded solutions
of Ψ1 and Ψ2. This shows uniqueness of e(b, t). Step (II) of the proof for Lemma
11 applied to the flow Ψ1 and the time inverse of Ψ2 implies continuity of the map
(t, b) 7→ e(b, t).

Corollary 1 will allow us to derive results on topological conjugacy. More specif-
ically, we use the following notion of topological conjugacy which respects the skew
product structure (cf. [3, Definition 2.3]).
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Definition 2.4. Let Ψ1 = (θ1, ψ1) and Ψ2 = (θ2, ψ2) be affine linear flows on
vector bundles B1 × Rd and B2 × Rd , respectively. We say that Ψ1 and Ψ2 are
topologically skew conjugate if there exists a skew homeomorphism

H = (hB , h) : B1 × Rd → B2 × Rd

such that H(Ψ1
t (b, x)) = Ψ2

t (H(b, x)); i.e., hB : B1 → B2, h : B1 × Rd → Rd are
maps with

hB(θ1t b)) = θ2t (hB(b)) for all t ∈ R and b ∈ B1, (15)

h(θ1t b, ψ
1(t, b, x)) = ψ2(t, hB(b), h(b, x)) for all t ∈ R, b ∈ B1, and x ∈ Rd. (16)

Thus topological skew conjugacy requires that the base flows are topologically
conjugate via the homeomorphism hB and (16) holds. The next theorem shows
that hyperbolic affine-linear flows are skew conjugate to their linear part.

Theorem 2.5. Consider the affine-linear flow Ψ in (4) and assume that the fol-
lowing conditions are satisfied:

(i) the linear part Φ of Ψ is hyperbolic with stable subbundle V1 and unstable
subbundle V2;

(ii) the affine terms f1 and f2 defined by (8) satisfy property (3), and there is
M > 0 with

‖f(b)‖∞ ≤M for all b ∈ B.
(iii) The maps : B → Rd

b 7→
∫ 0

−∞
ϕ1(−s, θsb, f(b, s))ds and b 7→

∫ 0

−∞
ϕ2(s, θ−sb, f(b,−s))ds

are continuous.
Then Ψ and its linear part Φ are topologically skew conjugate. Moreover, consider

two affine-linear flows Ψ and Ψ̂ satisfying assumptions (i), (ii), and (iii). Then
they are topologically skew conjugate, if and only if the base flows are topologically
conjugate and the dimensions of the stable subbundles coincide.

Proof. The second assertion follows from the first one and [3, Corollary 3.4], which
states that two hyperbolic linear flows are topologically skew conjugate iff their
base flows are topologically conjugate and the dimensions of their stable subbundles
coincide. Hence it remains to show that Ψ and its linear part Φ are topologically
skew conjugate. Their base flows coincide, hence we can take hB as the identity
on B. Define h as the translation with respect to the unique bounded solutions e,
which exist by Corollary 1:

h(b, x) = x− e(b, 0), (b, x) ∈ B × Rd,

The map H : B × Rd → B × Rd defined by

H(b, x) = (b, h(b, x)), (b, x) ∈ B × Rd,

is continuous and bijective with continuous inverse

H−1(b, x) = (b, x+ e(b, 0)), (b, x) ∈ B × Rd.

Hence it is a skew homeomorphism. By Lemma 2.2, the difference of the solutions
for the initial values x and e(b, 0) is a solution of the homogeneous system with
initial value (b, x− e(b, 0)) ∈ B × Rd,

Ψt(b, x)−Ψt(b, e(b, 0)) = Φt(b, x− e(b, 0)) for all t ∈ R.
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Since e(θtb, 0) = e(b, t), we find

h(θ1t b, ψ(t, b, x)) = ψ(t, b, x)− e(θtb, 0)

= ψ(t, b, x)− e(b, t)
= ψ(t, b, x)− ψ(t, b, e(b, 0))

= ϕ(t, b, x− e(b, 0))

= ϕ(t, b, h(b, x)).

Hence equality (16) holds and H = (idB , h) is the desired conjugacy.

3. Conjugacy in affine control system. In this section we show that control
systems of the form (1) define affine-linear flows. In case of hyperbolicity, they
satisfy the assumptions of Theorem 2.5 and hence we obtain a classification of these
control systems with respect to topological skew conjugacy.

Consider an affine control system

ẋ = A0x+ a0 +

m∑
i=1

ui(t)[Aix+ ai], u = (u1, ..., um) ∈ U , (17)

given by {(A0, a0), · · · , (Am−1, am−1)}, where Ai ∈ gl(d,R), ai ∈ Rd for i =
0, . . . ,m, and the control range U ⊂ Rm is assumed to be compact and convex.

Remark 3. A special case of (1) is

ẋ = A0x+ a0 +

m1∑
i=1

ui(t)Aix+Bu0(t), (18)

where B is a d ×m2 matrix with columns bi ∈ Rd. This follows by defining m =
m1 + m2, Ai = 0 for i = m1 + 1, ...,m1 + m2, and ai = 0 for i = 1, ...,m1, ai = bi
for i = m1 + 1, ...,m1 +m2. Note also that

ẋ = A0x+ u(t)A1x+ u(t)a1

is not of the form (18).

System (17) can be written as

ẋ = A(u(t))x+ a(u(t)),

where

A(u) := A0 +

m∑
i=1

Aiui and a(u) :=

m∑
i=1

uiai + a0, u ∈ Rm.

For u ∈ U , the fundamental solution Xu(t, s) of the homogeneous equation is given
by

d

dt
Xu(t, s) = A(u(t))Xu(t, s), Xu(s, s) = I, t, s ∈ R.

Then the solutions x(t) = ψ(t, s, x0, u) of (17) with initial condition x(s) = x0 are
given by

x(t) = Xu(t, s)x0 +

∫ t

s

Xu(t, τ)a(u(τ))dτ, t ∈ R.

If s = 0 we omit this argument, i.e., ψ(t, x0, u) := ψ(t, 0, x0, u).
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Proposition 2. Under the assumptions above, control system (17) defines an
affine-linear flow Ψ given by (2) on the vector bundle U × Rd, where U is en-
dowed with a metric compatible with the weak∗ topology on L∞(R,Rm) which can
be identified with the dual space of L1(R,Rm).

Proof. Since this system is control-affine, [5, Lemma 4.3.2] implies that the corre-
sponding flow Ψ on U ×Rd is continuous, uniformly on bounded t-intervals. Define

f : U → L∞(R,Rd), f(u, t) := a(u(t)) =

m∑
i=1

ui(t)ai + a0, u ∈ U , t ∈ R.

Then f(u, t+s) = a(u(t+s)) = f(θs(u), t). We can write the variations-of-constants
formula as

ψ(t, x0, u) = Xu(t, 0)x0 +

∫ t

0

Xu(t, s)f(u, s)ds.

Observe that the columns of Xu(t, s) are the solutions of the bilinear control system

ẋ = A(u(t))x with x(s) = ei,

where ei is the ith standard basis vector in Rd. Thus they depend continuously
on (t, u). Furthermore, Xu(t, s) = Xu(s+·)(t− s, 0). We see that Ψ and the flow Φ
associated with the homogeneous system ẋ = A(u(t))x, u ∈ U , satisfy

Ψt(u, x) = Φt(u, x) +

∫ t

0

Φt−s(θsu, f(u, s))ds for (t, u, x) ∈ R× U × Rd.

The following theorem is the main result of this paper. It presents a classification
of affine (or inhomogeneous bilinear) control systems with respect to topological
skew conjugacy.

Theorem 3.1. Consider affine control system (17) with compact and convex control
range U ⊂ Rm, and its homogeneous part

ẋ = A0x(t) +

m∑
i=1

ui(t)Aix(t) = A(u(t))x(t) (19)

with associated flows Ψ and Φ on U ×Rd, respectively. Assume that the linear flow
Φ is hyperbolic. Then Ψ and Φ are topologically skew conjugate. Moreover, consider
two affine control systems of the form (17). Then the associated affine-linear flows
are topologically skew conjugate if and only if the shift flows on the sets of control
functions are topologically conjugate and the dimensions of the stable subbundles
coincide.

Proof. We only have to verify the assumptions of Theorem 2.5. The hyperbolicity
condition (i) holds by assumption. Concerning condition (ii), the affine term is here
given by

f(u, t) := a(u(t)) =

m∑
i=1

ui(t)ai + a0,

and, as noted in the proof of Proposition 2, property (3) holds:

f(u, t+ s) = a(u(t+ s)) =

m∑
i=1

ui(t+ s)ai + a0 = f(θs(u), t).
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The projections to the stable and unstable subbundles are linear. Since f(u, t) is
a linear combination of the ai, its projections are determined by the projections of
the ai. Then property (3) also holds for the projections of f to the stable and the
unstable subbundles. Uniform boundedness follows by compactness of the control
range U .

It remains to show the continuity properties in (iii). The integrand in∫ 0

−∞
ϕ1(−s, θsu, f(u, s))ds =

∫ ∞
0

ϕ1(s, θ−su,
∑m
i=1ui(s)ai + a0)ds

is bounded by∣∣∣∣∣ϕ(s, θ−su,

m∑
i=1

ui(s)ai + a0)

∣∣∣∣∣ =
∣∣Φ1
s(θ−su, ·) [

∑m
i=1ui(τ)ai + a0]

∣∣
≤
∥∥Φ1

s(θ−su, ·)
∥∥ |∑m

i=1ui(τ)ai + a0|
≤ K1e

−αtsupu∈U |
∑m
i=1uiai + a0| .

Hence, invoking Lebesgue’s theorem on dominated convergence, continuity follows
if the integrand converges pointwise for u→ u0 weak∗ in U . One has∣∣ϕ(s, θ−su, f(u, s))− ϕ(s, θ−su

0, f(u0, s))
∣∣

≤
∣∣ϕ(s, θ−su,

∑m
i=1ui(s)ai + a0)ds− ϕ(s, θ−su

0,
∑m
i=1ui(s)ai + a0)ds

∣∣
+
∣∣ϕ(s, θ−su

0,
∑m
i=1ui(s)ai + a0)− ϕ(s, θ−su

0,
∑m
i=1u

0
i (s)ai + a0)

∣∣ .
The variation-of constants formula shows that the first summand equals∫ s

0

[Xθ−su(t, τ)−Xθ−su0(t, τ)]a(u(τ))dτ

≤
∫ s

0

∥∥Xθ−su(s, τ)−Xθ−su0(s, τ)
∥∥dτ supu∈U |

∑m
i=1uiai + a0| .

The integrand is bounded and converges pointwise to 0. Hence the first summand
converges to 0 for u→ u0.

The second summand equals∫ s

0

Xθ−su0(s, τ)[a(u(τ))− a(u0(τ))]dτ

=

∫
R
χ[0,s](τ)Xθ−su0(s, τ)[a(u(τ))− a(u0(τ))]dτ.

Since a is affine linear, weak∗ convergence of u to u0 implies that also a(u(·))
converges weak∗ to a(u0(·)) in L∞(R,Rd), hence also the second summand converges
to 0 and continuity of the first map in (iii) is established. Analogously, one shows
continuity of the second map.

Remark 4. Criteria for topological conjugacy of the shift flows on the base space
of control functions are given in [3, Corollary 6.3].

Remark 5. Theorem 3.1, in particular, applies to linear control systems ẋ =
Ax + Bu with compact convex control range. For hyperbolic matrix A, it follows
that these control systems are topologically conjugate to the uncontrolled system
ẋ = Ax; the conjugacy map h : U×Rd → Rd is h(u, x) = x−e(u, t), where e(u, t) :=
−A−1Bu(t). This is similar to the Hartman-Grobman theorem by Baratchart,
Chyba, and Pomet [4, Theorem 3.7], who show that (locally around an equilibrium
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and for small control ranges) control systems are conjugate to the uncontrolled
system obtained by linearization about the equilibrium.
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