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1. Introduction. The problem to determine minimal data rates for performing
control tasks has been considered for more than twenty years, see the survey Nair,
Fagnani, Zampieri and Evans [16]. Early landmarks are the papers by Delchamps [5],
who considered quantized information for stabilization and proposed to use statistical
methods from ergodic theory, and Wong and Brockett [22] who discussed stabilization
of linear systems via coding. From the wealth of literature on this topic we also cite
Tatikonda and Mitter [20], Delvenne [6], Fagnani and Zampieri [8], Matveev and
Savkin [14], Nair, Evans, Mareels, and Moran [17], Xie [23]. The present paper
proposes an approach that is di¤erent from quantization of the state space in order
to analyze stabilization about an equilibrium. In particular, no information pattern
is speci�ed describing how the information on the states of the system is available
for the controller. The approach is based on ideas from [17] where for discrete-time
systems the notion of topological feedback entropy is introduced which has similarities
to the notion of topological entropy in the theory of dynamical systems as presented
in Katok and Hasselblatt [10] or Walters [21]; and on concepts from Colonius and
Kawan [2] and Kawan [11, 12, 13], where invariance entropy for controlled invariance
has been studied.

Taking up an idea formulated in Tatikonda and Mitter [20, p. 1057], we consider
the time dependent controls which have to be generated by a controller in order
to achieve exponential stability. In contrast to most of the literature, we consider
continuous time systems. There are two ways to measure the information needed for
exponential stabilization for a given set Q of initial states: Either one can look at
sets of control functions on [0;1) which admit exponential stabilization and at the
required bits to discern them on any �nite interval [0; T ] and then analyze the bit
rate for T ! 1; �nally, one can minimize the bit rate over such sets of controls.
Alternatively, one may look at sets of control functions de�ned on a bounded interval
[0; T ] admitting exponential decay on [0; T ] and then look at the minimal number of
bits for such a set of control functions. Then, again, one can analyze what happens
for T ! 1. In the �rst case we speak about minimal bit rates and in the second
case, we speak about entropy, since this approach is close to entropy in the theory of
dynamical systems.

A discouraging example (Example 2.1) and a general result for linear control sys-
tems show that �nitely many controls are not su¢ cient for an exponential estimate on
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a �nite interval. Hence we impose somewhat weaker conditions. Then the stabiliza-
tion entropy can be shown to be �nite; see Theorem 3.3. In the linear case, a formula
in terms of eigenvalues holds. It is worth to emphasize, that this formula pertains to a
�xed exponential decay rate; see Theorem 4.2. Thus it also applies to cases, where the
control goal is to increase the exponential decay rate for a stable system, a situation
where �nite communication channels might more easily be tolerated. On the other
hand, the stabilization entropy provides an upper bound for the minimal bit rate. In
particular, the minimal bit rate is �nite, see Theorem 5.3, and in the linear case, an
explicit estimate is available.

In Section 2 stabilization entropy and minimal bit rates for stabilization are de-
�ned and the approach taken in the present paper is explained in more detail. Section
3 provides upper and lower bounds for the stabilization entropy. Section 4 character-
izes the stabilization entropy for linear control systems using the sum of the real parts
of the eigenvalues exceeding the exponential decay rate. Final Section 5 shows that
the minimal bit rates are equal to or less than the stabilization entropy. For linear
systems, conditions are indicated which ensure that both values coincide.

Notation. The closure of a set A is clA and the cardinality of a set A is #A;
thus if A is a �nite set, #A is the number of its elements and otherwise #A = 1.
The limit superior and the limit inferior are denoted by lim and lim, respectively.

2. Minimal bit rates and entropy for stabilization. This section discusses
the problem formulation and introduces the concepts of minimal bit rates and entropy
for exponential stabilization of a control system about an equilibrium. In particular,
Proposition 2.2 and Lemma 2.3 motivate the technical formulation.

Consider a nonlinear control system of the form

_x(t) = f(x(t); u(t)); u 2 U ; (2.1)

where f : Rd � Rm ! Rd is continuous and Lipschitz continuous with respect to the
�rst argument; the admissible controls are given by

U = fu : [0;1)! Rm j u(t) 2 U for almost all t � 0g;

where we assume that the controls u are integrable on every bounded interval and
the control range U is a subset of Rm. We assume that (i) unique global solutions
'(t; x0; u); t � 0; of the di¤erential equation with initial condition x(0) = x0 2 Rd and
control u 2 U exist and (ii) on compact intervals, the solutions depend continuously
on the initial value.

We consider the bit rates for the problem to stabilize an equilibrium x� 2 Rd
corresponding to an admissible control value u� 2 U , i.e., 0 = f(x�; u�). Without loss
of generality the equilibrium is given by x� = 0 corresponding to the control value
u� = 0 2 U . Suppose that the system is exponentially controllable to the equilibrium
for all x0 in a neighborhood of x� = 0, i.e., there are constants M;� > 0 such that
for all x0 6= 0 there is u 2 U with

k'(t; x0; u)k < Me��t kx0k for all t � 0: (2.2)

This holds, for example, if the linearized system is stabilizable by a linear feedback;
see, e.g., Sontag [19, Section 5.8] for asymptotic stability and Grüne and Junge [9,
Satz 9.8] for exponential stability. For linear control systems, an estimate of the form
(2.2) holds i¤ the unstable part is controllable..
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We are interested in problems where the controller does not have continual access
to the present state x(t) (or to observed values y(t) = g(x(t)).) Instead, suppose that
the communication channel between the system and the controller only admits a �nite
bit rate. Then it is not justi�ed that the controller generates in�nitely many di¤erent
control functions on a �nite time interval, since only a �nite amount of information is
available. This excludes state dependent controls u(x(t; x0)), where depending on the
initial states x0 one obtains in�nitely many control functions. Instead, the controller
might use information on the system to compute open loop controls on some time
interval [ti; ti+1]; then, using updated information, a new control function might be
computed and used on the next time interval [ti+1; ti+2] (the ti might depend on
the initial value x0.) The computations may be based on quantization of the state
space, symbolic controllers or may be done via devices like Model Predictive Control
(MPC). In any case, this results in time dependent control functions u de�ned on
[0;1). For every initial value, one of these control functions should yield the desired
decay rate. Instead of concentrating on the algorithmic question how to generate
these controls, we discuss the minimal bit rate needed to discern the time dependent
control functions u on any time interval [0; T ]; T > 0. This, in fact, is the point of
view taken in Tatikonda and Mitter [20, p. 1057], who estimate the minimal bit rate
for stabilization of discrete time linear systems from below, see [20, Proposition 3.2].

The following example (the simplest controllable system) shows that a direct
approach is not possible. Here on a �nite time interval [0; T ] one cannot �nd �nitely
many controls such that for every point in a neighborhood of the origin exponential
estimate (2.2) is satis�ed.

Example 2.1. Consider the following scalar system

_x = u; u 2 U = R: (2.3)

Let � > 0;M > 1 and �x T > 0. We claim that there is no �nite set S of control
functions on [0; T ], such that for every 0 6= x0 2 K := [�1; 1] there is u 2 S such that
the exponential estimate

j'(t; x0; u)j =
����x0 + Z t

0

u(s)ds

���� < Me��t jx0j for all t 2 [0; T ] (2.4)

holds. We proceed by contradiction: Suppose that a �nite set S = fu1; :::; ung with
the stated properties exists and de�ne

Kj := fx0 2 K j k'(t; x0; uj)k < Me��t kx0k for all t 2 [0; T ]g: (2.5)

Observe that 0 62 Kj. For the control u0(t) � 0, every point x0 is an equilibrium.
Thus for x0 6= 0 the control u0 does not satisfy (2.4) if T is large enough such that
Me��T < 1 and we may assume that u0 62 S. Hence for every j one �nds tj 2 [0; T ]
with

cj := max
t2[0;T ]

����Z t

0

uj(s)ds

���� = ����Z tj

0

uj(s)ds

���� > 0:
Consider an initial point x0 2 K with jx0j < minj

cj
2M . Observe that then jx0j <

M jx0j < 1
2 minj cj, since M > 1. We claim that there is no control uj 2 S satisfying

(2.4). In fact, one computes����x0 + Z tj

0

uj(s)ds

���� � ����Z tj

0

uj(s)ds

����� jx0j � cj �
cj
2
=
cj
2
> e��tj

cj
2
> Me��tj jx0j :
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An easy generalization of this example shows that the same result valid for any
linear control system.

Proposition 2.2. Consider a linear control system of the form

_x = Ax+Bu

with A 2 Rd�d; B 2 Rd�m and controls u : [0;1) ! Rm which are integrable on
every bounded interval. Assume that there is an eigenvalue � of A with Re� � 0. Let
� > 0;M > 1, consider a neighborhood K of the origin and �x T > 0. Then there is
no �nite set S of control functions such that for every 0 6= x0 2 K there is u 2 S with

k'(t; x0; u)k < Me��t kx0k for all t 2 [0; T ]: (2.6)

Proof. Again we proceed by contradiction. Suppose that a �nite set S =
fu1; :::; ung of control functions with the stated property exists and de�ne Kj as
in (2.5). Consider x0 6= 0 in the real eigenspace E(�) for �. Then, for T large enough
such that Me��T < 1, any control u0 with

R t
0
eA(t�s)Bu0(s)ds � 0 will not yield

estimate (2.6). Hence, we may assume that the controls uj 2 S; j 2 J � f1; :::ng
which for any 0 6= x0 2 K \ E(�) yield estimate (2.6) satisfy for some tj 2 [0; T ]

cj := max
t2[0;T ]

Z t

0

eA(t�s)Buj(s)ds

 = Z tj

0

eA(tj�s)Buj(s)ds

 > 0:
Choose 0 6= x0 2 K \ E(�) with kx0k < minj2J

cj
2M . We �nd for every j 2 J the

contradiction

k'(tj ; x0; uj)k =
x0 + Z tj

0

eA(tj�s)Buj(s)ds

 � Z tj

0

eA(tj�s)Buj(s)ds

� kx0k
� cj �

cj
2
=
cj
2
� e��tj

cj
2
> Me��tj kx0k :

In contrast to the linear example (2.3), the scalar bilinear system

_x = (1 + u)x; u 2 U = R;

can be stabilized by the single constant control u(t) � �2. Thus a single bit is
su¢ cient. See also de Persis [7] for other situations where �nitely many bits are
su¢ cient. While it might be worthwhile to study bilinear control systems in this
context, we follow a di¤erent path in the rest of this paper and relax the exponential
stability property (2.2) by introducing a small additive term. The following simple,
but basic lemma shows that then only �nitely many bits are required on a �nite
interval.

Lemma 2.3. Consider a control system of the form (2.1) and let K be a compact
subset of Rd. Assume that there are constants M > 1 and � > 0 such that for all
0 6= x 2 K there is u 2 U with

k'(t; x; u)k < Me��t kxk for all t � 0: (2.7)

Let " > 0. Then for every T > 0 there is a �nite set S = fu1; : : : ; ung � U such that
for every x 2 K there is uj 2 S with

k'(t; x; uj)k < e��t ("+M kxk) : (2.8)
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Proof. For every x0 2 K choose a control u 2 U with

k'(t; x0; u)k < Me��t kx0k for all t 2 [0; T ]:

By continuous dependence on initial values (as assumed for (2.1)) there is � with
0 < � < "=M such that for all x 2 Rd with kx0 � xk < � one has for all t 2 [0; T ]

k'(t; x; u)k < Me��t kx0k �Me��t (kx0 � xk+ kxk)
< Me��t (� + kxk)
< e��t ("+M kxk) :

Now compactness of K shows that there is a �nite set S = fu1; : : : ; ung � U such
that for each x 2 K there is uj 2 S satisfying for all t 2 [0; T ]

k'(t; x; uj)k < e��t ("+M kxk) .

In view of the preceding lemma, we will consider weakened versions of estimate
(2.7). There are the two ways to measure the information needed for stabilization
and we begin with an entropy-like notion. Consider a compact set K � Rd of initial
states, and let � > 0;M > 1 and " > 0. For a time T > 0 we call a subset S � U a
(T; "; �;M;K)-spanning set of controls if for all x 2 K there is u 2 S with

k'(t; x; u)k < e��t ("+M kxk) for all t 2 [0; T ]: (2.9)

We denote the cardinality of S by the symbol #S and the minimal cardinality of all
these sets is

sstab(T; "; �;M;K) := minf#S j S is (T; "; �;M;K)-spanningg: (2.10)

If there is no �nite set S of controls with this property (in particular, if there is
no such set at all), we let sstab(T; "; �;M;K) := 1. Note that for "1 > "2 >
0, any (T; "2; �;M;K)-spanning set is also (T; "1; �;M;K)-spanning. Lemma 2.3
shows that exponential controllability condition (2.7) implies the existence of �nite
(T; "; �;M;K)-spanning sets. We want to determine which information has to be
transmitted through a digital communication channel in order to identify a control
function in such a �nite set S. The elements can be encoded by symbols given by
�nite sequences of 0�s and 1�s in the set

�k := f(s0s1s2:::sk�1) j si 2 f0; 1g for i = 0; 1; :::; k � 1g;

where k 2 N is the least integer greater than or equal to log2#S. Thus #S is
bounded above by 2k. Equivalently, the number of bits determining an element of S
is log2(2

k) = k. It will be convenient to use here the natural logarithm instead of the
logarithm with base 2. It allows us to avoid the annoying factor log2 e in Section 4
(regrettably, it will show up in Section 5). Now we consider what happens for time
tending to in�nity and then " tending to 0 to obtain the following notion describing
an entropy property for exponential stabilization.

Definition 2.4. Let K be a compact set in Rd and �;M > 0. Then the (�;M)-
stabilization entropy hstab(�;M;K) is de�ned by

hstab(�;M;K) = lim
"&0

lim
T!1

1

T
ln sstab(T; "; �;M;K):
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In the following, we drop the argument K in this and in similar notions if the
choice ofK is clear or if its speci�cation is irrelevant in the corresponding context. The
existence of the limit for "& 0 is obvious, since it equals the supremum over all " > 0.
(The value +1 is allowed.) Furthermore, the inequality hstab(�0;M 0) � hstab(�;M)
holds for � � �0 > 0 and M 0 �M > 0.

Remark 2.5. If one would consider � = 0, condition (2.9) just means that
every trajectory starting in K remains in the ball around the origin with radius " +
M maxx2K kxk. In this case, the results on invariance entropy from Kawan [11, 12,
13] would apply.

A second way of counting bits is the following. Consider a set of control functions
de�ned on [0;1) which allow us to steer the system asymptotically to the equilibrium
x� = 0 satisfying the following conditions. Let M > 1; � > 0; " > 0 and let  be a
decreasing function on [0;1) with (0) = " and limt!1 (t) = 0. For brevity, we call
 an L"-function (note that continuity of  is not required.) Let R(; "; �;M) � U
be a set of of control functions such that for all x 2 K there is u 2 R(; "; �;M) with

k'(t; x; u)k < (t) +Me��t kxk for all t � 0. (2.11)

ThenR(; "; �;M) is called (; "; �;M)-stabilizing forK. Thus in the "- neighborhood
of the equilibrium, the decay given by the exponential rate � may slow down, but still
convergence holds for t!1. Let

RT (; "; �;M) := fuj[0;T ] j u 2 R(; "; �;M)g

be the corresponding restrictions of the controls in R(; "; �;M). Suppose that the
cardinality #RT (; "; �;M) is �nite (Lemma 5.2 will provide conditions when this
holds.) The bit rate on the time interval [0; T ] is de�ned as 1

T log2#RT (; "; �;M).
If there is no setR(; "; �;M) with (2.11) or if RT (; "; �;M) contains in�nitely many
elements, we set #RT (; "; �;M) :=1. The required bit rate for stabilization using
controls in R(; "; �;M) is

b(R(; "; �;M)) := limT!1
1

T
log2#RT (; "; �;M):

Definition 2.6. With the notions introduced above, the minimal bit rate for
(�;M)-stabilization at x� = 0 of a compact set K � Rd is

bstab(�;M) := lim
"&0

inf
2L"

inf
R(;";�;M)

b(R(; "; �;M));

where the inner in�mum is taken over all (; "; �;M)-stabilizing sets R(; "; �;M) �
U of controls and the outer in�mum is taken over all L"-functions .

The limit for " & 0 is the supremum for " > 0. Note also the inequality
bstab(�

0;M 0) � bstab(�;M) for � � �0 > 0 and M 0 �M > 0.
An example for an allowed L"-functions is (t) = "e��t; t � 0. However, for this

function, we cannot prove our main result for the stabilization bit rate (Theorem 5.3)
showing that the stabilization entropy provides an upper bound. Also, this theorem
will only give a result for the limit inferior for T ! 1 (not for the limit superior).
Consideration of the limit inferior may be justi�ed by the fact that we are interested
in the minimal bit rate for T !1, hence the times may be chosen appropriately.

The stabilization entropy indicates how much the number of required control
functions increases, when time increases. Here minimization is performed on each
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interval [0; T ] separately. If one wants to enlarge the time interval where the expo-
nential decay holds, one may have to consider controls which, when restricted to the
smaller interval, are di¤erent from the earlier ones. This is in contrast to minimal
bit rates, where restrictions to [0; T ] are considered for control functions de�ned on
[0;1). Thus, while stabilization entropy certainly merits its own interest, the minimal
bit rate might appear more appealing from this point of view.

Remark 2.7. The di¤erence between these two concepts can also be seen by
looking at them from a quantization point of view. Let R(; "; �;M) be a (; "; �;M)-
stabilizing set such that for every T > 0 the set RT (; "; �;M) of restrictions to [0; T ]
is �nite. Then de�ne for every u 2 RT (; "; �;M)

K(u; T ) := fx 2 K j k'(t; x; u)k < (t) +Me��t kxk for all t 2 [0; T ]g:

The sets K(u; T ) form an open cover of K which may be viewed as a �nite quanti-
zation. For T 0 > T , the same construction for RT 0(; "; �;M) again yields a �nite
quantization of K which is obtained by re�ning the quantization at time T , since both
are obtained by restrictions of controls in R(; "; �;M). In contrast, the quantization
for T 0 > T obtained by a (T 0; "; �;M)-spanning set of controls used for de�ning the
entropy is not related to the quantization associated with a (T; "; �;M)-spanning set.

Remark 2.8. With log2 e � lnx = log2 x one immediately �nds

bstab(�;M) = log2 e � lim
"&0

inf
2L"

inf
R(;";�;M)

limT!1
1

T
ln#RT (; "; �;M):

In the next two sections we will �rst concentrate on the stabilization entropy,
which is easier to analyze than the minimal bit rate.

3. Stabilization Entropy. In this section, upper and lower estimates and, in
particular, �niteness of the stabilization entropy will be proved.

The following proposition explains the behavior of stabilization entropy when the
set of initial values is changed, and it shows that it su¢ ces to consider multiples of
a �xed time step. These properties which are analogous to properties of invariance
entropy (cp. Colonius and Kawan [2, Proposition 3.4(ii) and (iii)]) are not used below.

Proposition 3.1. Consider a system of the form (2.1), let K � Rd be a compact
set and �x � > 0 and M > 1.

(i) Then for all " > 0 and � > 0

lim
T!1

1

T
ln sstab(T; "; �;M) = lim

N!1

1

N�
ln sstab(N�; "; �;M): (3.1)

(ii) Let Ki � K, i = 1; : : : ; N , be closed subsets of K with K =
SN
i=1Ki. Then

the stabilization entropies with respect to K and Ki, respectively, satisfy

hstab(�;M;K) = max
i=1;:::;N

hstab(�;M;Ki):

Proof. (i) Obviously, the left-hand side of (3.1) is not less than the right-hand
side. In order to show the reverse inequality, let (Tk)k2N be a sequence converging
to 1. Then for every k 2 N there exists nk 2 N such that nk� � Tk < (nk + 1)� ,
and nk ! 1 for k ! 1. If S � T , then sstab(S; "; �;M) � sstab(T; "; �;M), which
implies

sstab(Tk; "; �;M) � sstab((nk + 1)�; "; �;M)
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and consequently

1

Tk
ln sstab(Tk; "; �;M) �

1

nk�
ln sstab((nk + 1)�; "; �;M):

Since 1
nk�

= nk+1
nk

1
(nk+1)�

and nk+1
nk

! 1 for k !1, we obtain assertion (i)

lim
k!1

1

Tk
ln sstab(Tk; "; �;M) � lim

k!1

1

nk�
ln sstab((nk + 1)�; "; �;M)

= lim
N!1

1

N�
ln sstab(N�; "; �;M):

(ii) Every minimal (T; "; �;M;K)-spanning set S is also (T; "; �;M;Ki)-spanning.
Thus we obtain sstab(T; "; �;M;Ki) � sstab(T; "; �;M;K) implying

max
i=1;:::;N

hstab(�;M;Ki) � hstab(�;M;K):

On the other hand, if Si is a minimal (T; "; �;M;Ki)-spanning set, i = 1; : : : ; N , then
S :=

SN
i=1 Si is (T; "; �;M;K)-spanning. This yields

sstab(T; "; �;M;K) � #S �
NX
i=1

#Si =
NX
i=1

sstab(T; "; �;M;Ki):

By a standard property of such limits (see, e.g., [2, Lemma 3.3]) we obtain

lim
T!1

1

T
ln

NX
i=1

sstab(T; "; �;M;Ki) = max
i=1;:::;N

lim
T!1

1

T
ln sstab(T; "; �;M;Ki)

implying the desired result

hstab(�;M;K) � lim
"&0

lim
T!1

1

T
ln

NX
i=1

sstab(T; "; �;M;Ki) � max
i=1;:::;N

hstab(�;M;Ki):

Next we will provide lower and upper bounds for the (�;M)-stabilization entropy
hstab(�;M). In the following theorem, we denote the divergence of a function f with
respect to the �rst variable by

divxf(x; u) =
dX
i=1

@fi
@xi

(x; u) = trfx(x; u);

where f1; : : : ; fd : Rd � Rm ! R are the coordinate functions of f assumed to be
di¤erentiable with respect to x.

Let � 2 R+ = [0;1) be given and introduce a set V = V(�) of admissible controls
which has the form

V := fv : [0;1)! Rm j there is u 2 U with v(t) = e�tu(t) for all t � 0g: (3.2)

This generalized set of control functions will be needed in Section 4. Note that for
� = 0, the set V reduces to U . Naturally, V = U also holds for unconstrained control
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range U = Rm. The de�nition of stabilization entropy can, with only trivial changes,
be extended to control systems with admissible controls in V.

Theorem 3.2. Consider control system (2.1) with controls v in a set V of the
form (3.2) and let x� = 0 be an equilibrium with 0 = f(0; 0); 0 2 U . Suppose that
f is C1 with respect to x and that the derivative fx(x; u) is continuous in (x; u).
Let K � Rd be a compact set with positive Lebesgue measure �(K) and denote � :=
maxx2K kxk. Assume further that divxf(x; v) is bounded below for kxk � � + 1 and
v 2 V := fu j  � 0 and u 2 Ug. Then for �;M > 0 the stabilization entropy of K
satis�es the estimate

hstab(�;M) � �d+min
v2V

divxf(0; v): (3.3)

Proof. If hstab(�;M) = 1, inequality (3.3) is trivially satis�ed. Hence we may
assume that for " > 0;M > 0 and T > 0 there is a �nite (T; "; �;M)-spanning set S =
fv1; : : : ; vsg � V and we pick S with minimal cardinality, hence s = sstab(T; "; �;M).
De�ne for j = 1; : : : ; s the set Kj as the set of all x 2 K with

k'(t; x; vj)k < e��t ("+M kxk) for all t 2 [0; T ]:

One sees that for j = 1; : : : ; s

'(t;Kj ; vj) �
�
y 2 Rd j kyk < e��t ("+M�)

	
=: B(0; e��t ("+M�)):

In particular, if we consider the ball in the maximum-norm in Rd, we obtain for the
Lebesgue measures

�('(T;Kj ; vj)) � �(B(0; e��T ("+M�))) =
�
2e��T ("+M�)

�d
: (3.4)

On the other hand, by the transformation theorem and Liouville�s trace formula we
get for all j 2 f1; : : : ; sg

�('(T;Kj ; vj)) =

Z
Kj

����det @'@x (T; x; vj)
���� dx

� �(Kj) � inf
(x;v)

����det @'@x (T; x; v)
���� (3.5)

= �(Kj) � inf
(x;v)

exp

 Z T

0

divxf('(�; x; v); v(�))d�

!
:

Here, and in the rest of this proof, inf(x;v) denotes the in�mum over all (x; v) 2 K�V
with '(t; x; v) � clB(0; e��t ("+M�)) for all t 2 [0; T ]. Fix T0 2 [0; T ]. Since
e��t ("+M�) � e��T0 ("+M�) for t � T0 one obtains the estimate

inf
(x;v)

exp

 Z T

0

divxf('(�; x; v); v(�))d�

!
(3.6)

� exp
 
inf
(x;v)

Z T0

0

divxf('(�; x; v); v(�))d� + (T � T0) inf
(y;w)

divxf(y; w)

!
;

where the second in�mum is taken over all (y; w) 2 clB(0; e��T0 ("+M�))�V . This
term is �nite by the assumption on the divergence of f . Since k'(�; x; vj)k < �+1; � 2

9



[0; T0]; our assumption also guarantees that divxf('(�; x; v); v(�)) with (x; v) 2 K�V
is bounded below, hence also the �rst summand in the exponent is �nite.

We may assume that �(K1) = maxj=1;:::;s �(Kj). Inequalities (3.5) and (3.4)
imply

0 < �(K) �
sX
j=1

�(Kj) � s � �(K1)

� s � �('(T;K1; v1))

inf(x;v) exp
�R T

0
divxf('(�; x; v); v(�))d�

�
� s �

�
2e��T ("+M�)

�d
inf(x;v) exp

�R T
0
divxf('(�; x; v); v(�))d�

� ;
hence

s = sstab(T; "; �;M) �
�(K)

[2e��T ("+M�]
d
inf
(x;v)

exp

 Z T

0

divxf('(�; x; v); v(�))d�

!
:

Using (3.6) and taking the logarithm on both sides one �nds

ln sstab(T; "; �;M)

� ln�(K)� d ln
�
2e��T ("+M�)

�
+ inf
(x;v)

 Z T0

0

divxf('(�; x; v); v(�))d�

!
+ (T � T0) min

(y;w)
divxf(y; w):

Since

lim
T!1

1

T
ln
�
2e��T ("+M�)

�
= lim

T!1

��T
T

+ lim
T!1

1

T
ln(2"+ 2M�) = ��;

one �nds the inequality

lim
T!1

1

T
ln sstab(T; "; �;M) � �d+ lim

T!1

�
T � T0
T

min
(y;w)

divxf(y; w)

�
(3.7)

= �d+ min
(y;w)

divxf(y; w):

Recall that the minimum is taken over all (y; w) 2 clB(0; e��T0("+M�))�V . In the
Hausdor¤ metric the set clB(0; e��T0("+M�)) converges for T0 ! 1 to f0g. This,
together with (3.7), shows inequality (3.3).

The next theorem, whose proof is a modi�cation of Katok and Hasselblatt [10,
Theorem 3.3.9] and Colonius and Kawan [2, Theorem 4.2], shows, in particular, that
the stabilization entropy is �nite.

Theorem 3.3. Consider a control system of the form (2.1) and let x� = 0 be an
equilibrium with 0 = f(0; 0); 0 2 U � Rm and �x � > 0 and M > 1. Assume that
K � Rd is a compact neighborhood of the origin such that for every 0 6= x 2 K there
is a control u 2 U with

k'(t; x; u)k < Me��t kxk for all t � 0:
10



Furthermore, suppose that there is a Lipschitz constant L > 0 such that for all x1; x2
in an open set containing K

kf(x1; u)� f(x2; u)k � L kx1 � x2k for all u 2 U: (3.8)

Then the stabilization entropy of K satis�es

hstab(�;M) � (L+ �)d:

Proof. Let " > 0 and consider an open cover C of K by balls B(xi; e�(L+�)T "=M)
centered at points xi 2 K with i = 1; :::; N := #C. Without loss of generality, we may
assume that all xi 6= 0. By our hypothesis, we can assign to the point xi a control
function ui 2 U with

k'(t; xi; ui)k < Me��t kxik for all t 2 [0; T ]:

Then for all x 2 B(xi; e�(L+�)T "=M) and all t 2 [0; T ]

k'(t; x; ui)� '(t; xi; ui)k � kx� xik+ L
Z t

0

k'(�; x; ui)� '(�; xi; ui)kd�

implying by Gronwall�s inequality that for all t 2 [0; T ]

k'(t; x; ui)� '(t; xi; ui)k � kx� xikeLt < e�(L+�)T "eLT � e��t".

It follows that for every x 2 K there is ui such that for all t 2 [0; T ]

k'(t; x; ui)k � k'(t; x; ui)� '(t; xi; ui)k+ k'(t; xi; ui)k
� e��t"+Me��t kxik
� e��t ("+M kxi � xk+M kxk)

< e��t
�
"+Me�(L+�)T "=M +M kxk

�
� e��t (2"+M kxk) :

This shows that the set fu1; :::; uNg is (T; 2";M;�)-spanning.
In summary, we have shown that the minimal cardinality sstab(T; 2";M;�) of

a spanning set is bounded above by the minimal cardinality of a cover C of K by
(e�(L+�)T "=M)-balls. Thus, denoting the minimal cardinality of a cover of a subset
A of Rd by �-balls by c(�;A), one has

sstab(T; 2";M;�) � c(e�(L+�)T "=M;K):

We want to use that the upper box dimension of a set A � Rd is

lim sup
�&0

ln c(�;A)

ln(1=�)
� d: (3.9)

The equality ln(e(L+�)TM=") = (L+ �)T + ln(M=") shows that

(L+ �)T = ln(e(L+�)TM=")� ln("=M):
11



With � = e�(L+�)T "=M it follows that

lim
T!1

1

T
ln sstab(T; 2";M;�) � lim

T!1

1

T
ln c(�;K)

= (L+ �) lim
T!1

ln c(�;K)

(L+ �)T

= (L+ �) lim
T!1

ln c(e�(L+�)T "=M;K)

ln(e(L+�)TM=")� ln("=M)

= (L+ �) lim
T!1

ln c(e�(L+�)T "=M;K)

ln(e(L+�)TM=")

= (L+ �)lim
�&0

ln c(�;K)

ln(1=�)
� (L+ �)d:

For the last inequality, we have used (3.9). Now the assertion follows by letting " tend
to 0.

4. Entropy for linear control systems. In this section, the stabilization en-
tropy is determined for linear control systems in Rd of the form

_x(t) = Ax(t) +Bu(t); u 2 U ; (4.1)

with matrices A 2 Rd�d and B 2 Rd�m and control range U � Rm containing the
origin. Naturally, the solutions of (4.1) are given by the variation-of-constants formula

'(t; x; u) = eAtx+

Z t

0

eA(t��)Bu(�)d�:

First we prove the following lemma.
Lemma 4.1. Consider a linear control system of the form (4.1) with controls v

in a set V as de�ned in (3.2). Let K � Rd be a compact set with nonvoid interior and
suppose that the eigenvalues �1; : : : ; �d of A counted according to their multiplicity
can be ordered such that

Re�1 � Re�2 � ::: � Re�`�1 < 0 < Re�` � ::: � Re�d:

Take � with 0 < � � �Re�`�1 and, if there is no eigenvalue with negative real part,
take any � > 0. Then the (�;M)-stabilization entropy of system (4.1) with respect to
K satis�es

hstab(�;M) �
X
i�`
(�+Re�i):

Proof. Step 1 : Suppose that Re�i � 0 for all i 2 f1; : : : ; dg. Then the inequality

hstab(�;M) �
dX
i=1

(�+Re�i):

is an immediate consequence of Theorem 3.2 with f(x; v) = Ax+Bv. Here

divxf(x; v) = tr
@f

@x
(x; v) = trA =

dX
i=1

�i =
dX
i=1

Re�i:

12



Step 2: We prove the inequality hstab(�;M) �
P

i�`(� + Re�i) for arbitrary
matrices A. If all eigenvalues of A have negative real parts, the assertion is true, since
hstab(�;M;K) � 0 holds anyway. Hence, we may assume that there exists at least
one eigenvalue with positive real part. We write E+ and E� for the corresponding
unstable and stable subspaces, respectively, of the induced �ow (t; x) 7! eAtx. They
correspond to the eigenvalues with positive and negative real parts, respectively. This
furnishes the decomposition Rd = E+ � E� with associated projection � : Rd ! E+.
In an appropriate norm, one has k�xk � kxk for all x 2 Rd. The map � is open,
hence �(K) has nonvoid interior in E+. We can project our control system to E+ by

_y = �Ay + �Bv = A�x+ �Bv:

One �nds that the corresponding trajectories �' satisfy the semiconjugation property

(�')(t; �(x); v) = �('(t; x; v)) for all x 2 Rd; v 2 V; t � 0:

In particular, (�')(t; �(x); v) = '(t; �(x); v)). Now let " > 0 and T > 0. Consider a
minimal (T; "; �;M)-spanning set S � V for K and let y = �(x) 2 �(K) with x 2 K.
Then there is v 2 S such that for all t 2 [0; T ]

k(�')(t; y; v)k = k�('(t; x; v))k = k'(t; �(x); v)k � e��t ("+M kyk) :

This shows that S is also (T; "; �;M)-spanning for the set �(K) in the projected
system. Consequently, taking the limit superior for T ! 1 and then letting " & 0,
the corresponding entropies satisfy

hstab(�;M; �(K)) = lim
"&0

lim
T!1

1

T
ln sstab(T; "; �;M; �(K))

� lim
"&0

lim
T!1

1

T
ln sstab(T; "; �;M;K) = hstab(�;M;K): (4.2)

The projected system on E+ is a linear control system on E+ with dimE+ = d�`+1,
and the eigenvalues �`; :::; �d of A jE� : E+ ! E+ have positive real parts. Hence we
obtain by step 1 that

hstab(�;M;K) � hstab(�;M; �(K)) � (d� `+ 1)
X
i�`

Re�i =
X
i�`

(�+Re�i) :

In order to improve the estimate from above in Theorem 3.3, we will use in an
essential way the topological entropy of the linear �ow �tx := eAtx; (t; x) 2 R � Rd.
For background on topological entropy in compact metric spaces we refer to Katok
and Hasselblatt [10] or Robinson [18]. Topological entropy for linear �ows has been
characterized by Bowen [1]; see also Walters [21, Theorem 8.14], or Matveev and
Savkin [14, Theorem 2.4.2] who write down details for linear maps.

For a compact subset K � Rd and T; " > 0, a (T; ";K;�)-spanning set S is a
subset of Rd such that for every x 2 K there is x0 2 S such that for all t 2 [0; T ]
one has

eAtx� eAtx0 < ". (Note that here, for the �ow, spanning sets are subsets
of the state space, while for control systems, we have de�ned spanning sets as sets
of control functions.) Then, denoting by stop(T; ";K;�) the minimal cardinality of a
(T; ";K;�)-spanning set, the topological entropy of K is de�ned as

htop(K;�) = lim
"&0

lim
T!1

1

T
ln stop(T; ";K;�):
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Finally, the topological entropy is de�ned as the supremum over compact sets K � Rd
and it is equal to the sum of the positive real parts of the eigenvalues of A,

htop(�) := supKhtop(K;�) =
X

Re�i>0

Re�i:

An equivalent de�nition of topological entropy is given by replacing stop(T; ";K;�)
be the maximal cardinality of a (T; ";K;�)-separated set, which is a subset E of K
such that for all x0; x1 2 E there is t 2 [0; T ] with

eAtx0 � eAtx1 > ".
The next theorem characterizes the stabilization entropy about the equilibrium

x� = 0 for linear control systems.
Theorem 4.2. Consider a linear control system of the form (4.1) with 0 2 U .

Assume that there are M;� > 0 such that for all initial values 0 6= x 2 Rd there is a
control u 2 U with

k'(t; x; u)k < Me��t kxk for all t � 0: (4.3)

For every compact set K � Rd the (�;M)-stabilization entropy of system (4.1) satis-
�es

hstab(�;M;K) �
X

Re�i>��
(�+Re�i); (4.4)

here summation is over all eigenvalues �i of A, counted according to their multiplicity,
with Re�i > ��.

If, additionally, the set K has nonvoid interior in Rd, equality holds in (4.4). In
particular, hstab(�;M;K) is independent of K in this situation.

Proof. The proof is divided into three steps.

Step 1: We show that hstab(�;M;K) �
P

Re�i>��(� + Re�i) using Bowen�s result
for topological entropy of linear �ows. Order the eigenvalues �1; : : : ; �d of A such that

Re�1 � ::: � Re�d:

Let � 2 (�Re�`;�Re�`�1] with Re�` � 0. Then the eigenvalues of A + �I with
positive real parts are given by � + Re�`; :::; � + Re�d, and hence the topological
entropy of the �ow ��t = e(A+�I)t = e�teAt; t 2 R, is given by

htop(�
�) =

X
Re�i>��

(�+Re�i):

If � > �Re�1, all eigenvalues of A+�I have positive real parts and if Re�d < 0 and
� 2 (0;�Re�d) there is no eigenvalue of A+ �I with positive real part.

Fix " > 0 and T > 0. Let E � K be a maximal (T; ";K;��)-separated set, say
E = fx1; : : : ; xkg with cardinality k = stop(T; ";K;�

�). Without loss of generality,
we may take xj 6= 0 for all j. Then E is also (T; ";K;��)-spanning, which means
that for all x 2 K there is xj 2 E such that for all t 2 [0; T ]e(A+�I)tx� e(A+�I)txj < "; i.e.,

eAtx� eAtxj < e��t":

By assumption (4.3), we can assign to each xj 2 E � K; j = 1; : : : ; k, a control
function uj 2 U such that

k'(t; xj ; uj)k < Me��t kxjk for all t � 0:
14



Let S := fu1; : : : ; ukg � U . Using linearity, we obtain that for all x 2 K there is j
such that for all t 2 [0; T ]

k'(t; x; uj)� '(t; xj ; uj)k =
eAtx� eAtxj < e��t";

and hence

k'(t; x; uj)k � k'(t; x; uj)� '(t; xj ; uj)k+ k'(t; xj ; uj)k
< "e��t +Me��t kxjk
� "e��t +Me��t kxj � xk+Me��t kxk
� e��t ["(1 +M) +M kxk] :

This shows that the set S is (T; "(1 + M); �;M)-spanning. It follows that for all
T > 0; " > 0

sstab(T; "(1 +M);M; �) � k = stop(T; ";K;�
�);

and consequently

hstab(�;M;K) = lim
"&0

lim
T!1

1

T
ln sstab(T; "; �;M)

= lim
"&0

lim
T!1

1

T
ln sstab(T; "(1 +M);M; �)

� lim
"&0

lim
T!1

1

T
ln stop(T; ";K;�

�)

= htop(K;�
�)

� htop(�
�) =

X
i�`
(�+Re�i):

Step 2: In order to prove the converse inequality, consider for � 2 (0; �) the control
system

_y = (A+ �I) y +Bv(t) (4.5)

v 2 V(�) := fv : R! Rm j v(t) = e�tu(t); t 2 R for some u 2 Ug:

Then the solutions  (t; x0; v) of (4.5) and the solutions of (4.1) are related by

 (t; x0; v) = e(A+�I)tx0 +

Z t

0

e(A+�I)(t��)Bv(�)d�

= e�teAtx0 +

Z t

0

eA(t��)Be�(t��)v(�)d�

= e�t
�
eAtx0 +

Z t

0

eA(t��)Be���v(�)d�

�
= e�t

�
eAtx0 +

Z t

0

eA(t��)Bu(�)d�

�
= e�t'(t; x0; u)

with u(t) := e��tv(t); t � 0.
15



Now let " > 0 and T > 0. Consider a minimal (T; "; �;M)-spanning set S =
fu1; :::; ukg � U of (4.1) and de�ne vi 2 V(�) by vi(t) := e�tu(t); t � 0. Then for
every x0 2 K there is ui 2 S such that for [0; T ]

k (t; x0; vi)k = e�t k'(t; x0; ui)k < e�(���)t("+M kx0k):

This shows that fv1; :::; vkg � V(�) is (T; "; � � �;M)-spanning for system (4.5).
Consequently, the stabilization entropy hstab(�;M;K) of system (4.1) is bounded
below by the (�� �)-stabilization entropy of system (4.5).

Step 3 : Let �; � > 0 such that Re�`�1 � �� < �� < Re�`. We will conclude
the proof by showing that for system (4.5)

hstab(�� �;K) �
X
i�`
(�+Re�i):

This follows by an application of Lemma 4.1. The assumptions of this lemma hold,
since by choice of � the eigenvalues of A + �I with positive real parts are given by
�+Re�`; :::; �+Re�d and the largest eigenvalue with negative real part is �+Re�`�1.
Furthermore, since � � �Re�`�1, one has

0 < �� � � �(� +Re�`�1)

Lemma 4.1 implies that the stabilization entropy of system (4.5) is

hstab(�� �;K) �
X
i�`

[(�� �) + (� +Re�i)] =
X
i�`
(�+Re�i):

For ` = 1 and ` = d, one argues analogously. This completes the proof of the theorem.

Remark 4.3. For smooth nonlinear control systems and arbitrarily small control
range, we conjecture that a formula analogous to (4.4) holds, now for the Jacobian at
the equilibrium. Compare Nair, Evans, Mareels and Moran [17, Theorem 3] for such
a claim in the context of local uniform asymptotic stabilization.

Remark 4.4. In a discrete time setting, a formula similar to (5.16) shows up in
Nair and Evans [15, Theorem 1] for a problem with random initial states.

5. Minimal bit rates for stabilization. In this section, the minimal bit rate
for stabilization is related to the stabilization entropy.

Recall that for the de�nition of the stabilization entropy hstab(�;M;K) only
controls on bounded intervals of the form [0; T ] are employed; see (2.9). Hence we
have to concatenate controls de�ned on �nite intervals in order to obtain controls
de�ned for all t � 0 as needed for bit rates. This is prepared by the following key
technical lemma.

Lemma 5.1. Consider a compact neighborhood K of the equilibrium x� = 0 for
system (2.1). Let M > 1 and �� > � > 0 and suppose that " 2 (0; 12 ) is small enough
such that K contains the 2"-neighborhood of the equilibrium. Consider a sequence of
times Tn > T := T1 > T0 := 0; n 2 N, such that there is a (Tn; "n+2; ��;M)-spanning
set Sn � U of controls with a minimal number sn = sstab(Tn; "

n+2; ��;M) 2 N of
elements and Tn is large enough such that

e��
�TnM <

"n+2

3
; Tn >

lnM

�� � � and e��TnM max
x2K

kxk < "n+2

2
: (5.1)
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Abbreviate �n :=
Pn

i=0 Ti; n � 0. De�ne a set R� � U in the following way: v 2 R�

if for all n � 1 there is un 2 Sn with

v(t) = un (t� �n�1) for t 2 (�n�1; �n] :

Then for every x 2 K there is a control v 2 R� with

k'(�n; x; vk < 2" for all n � 1 (5.2)

and

k'(t; x; v)k < 2"n+2 +Me��t kxk for all t 2 [�n; �n+1] and n � 0: (5.3)

Proof. The �rst inequality in (5.1) and " 2 (0; 1) implyMe��
�Tn < "n+2

3 < 1
3 and

hence, using Tn > T

1

1� Me���Tn
"n+2

<
1

1�Me���T
<
3

2
: (5.4)

Furthermore, the second inequality in (5.1) implies Tn(�� � �) > lnM and hence
e�

�Tn > e�TnM and, �nally,

Me��
�Tn < e��Tn < 1: (5.5)

By de�nition of Sn, for every x 2 K there exists un 2 Sn such that for all t 2 [0; Tn]

k'(t; x; un)k < e��
�t
�
"n+2 +M kxk

�
: (5.6)

In particular, for every x 2 K there exists v1 := u1 2 S1 such that for all t 2 [0; T1]

k'(t; x; v1)k < e��
�t
�
"2 +M kxk

�
� "2 +Me��

�t kxk ; (5.7)

which implies assertion (5.3) for n = 1. By the third inequality in (5.1)

k'(T1; x; v1)k < "2 +Me��
�T1 kxk < 2"; (5.8)

and it follows that '(T1; x; v1) 2 K.
Now we �x x 2 K and de�ne inductively controls vn 2 U with the following

properties: For all n � 1 one has

'(�n; x; vn) 2 K and k'(�n; x; vn)k �
n�1X
i=0

�
Me��

�T
�i
"+

nY
i=1

�
Me��

�Ti
�
kxk : (5.9)

By (5.8) the control v1 satis�es (5.9) for n = 1. Suppose that (5.9) holds for n. Then,
by (5.6), there is a control un+1 2 Sn+1 such that for t 2 [0; Tn+1]

k'(t; '(�n; x; vn); un+1)k < e��
�t
�
"n+2 +M k'(�n; x; vn)k

�
: (5.10)

De�ne the control vn+1 by

vn+1(t) :=

�
vn(t) for t 2 [0; �n]

un+1(t� �n) for t 2 (�n; �n+1]:
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Then by the induction hypothesis (5.9) for n and Tn � T

k'(�n+1; x; vn+1)k = k'(Tn+1; '(�n; x; vn); un+1))k
< e��

�Tn+1
�
"n+2 +M k'(�n; x; vn)k

�
< "+Me��

�Tn+1

"
n�1X
i=0

�
Me��

�T
�i
"+

nY
i=1

�
Me��

�Ti
�
kxk
#

� "+Me��
�T

n�1X
i=0

�
Me��

�T
�i
"+Me��

�Tn+1

nY
i=1

�
Me��

�Ti
�
kxk

=
nX
i=0

�
Me��

�T
�i
"+

n+1Y
i=1

�
Me��

�Ti
�
kxk < 3

2
"+

"

2
= 2":

In the last line we have also used (5.4) and the last inequality in (5.1). This concludes
the induction step, since it shows that (5.9) also holds for n + 1 instead of n. The
control v 2 R� coinciding on [0; �n] with vn; n 2 N, is well de�ned and assertion (5.2)
is veri�ed.

Next we prove inequality (5.3). It holds on [0; T1], i.e., for n = 0, by (5.7). We
claim that for all n � 1

k'(�n; x; vn)k �
n�1X
i=0

M i
�
e��

�T
�i+1

"n�i+1 +

nY
i=1

�
Me��

�Ti
�
kxk : (5.11)

By (5.7) this holds for n = 1, since

k'(T1; x; u1)k < e��
�T "2 +Me��

�T1 kxk :

Again arguing inductively, suppose that (5.11) holds for n. By (5.10) and the induc-
tion hypothesis, the control vn+1 satis�es for t 2 [�n; �n+1]

k'(t; x; vn+1)k
= k'(t� �n; '(�n; x; vn); un+1)k
< e��

�(t��ni)
�
"n+2 +M k'(�n; x; vn)k

�
(5.12)

� e��
�(t��n)

 
"n+2 +M

n�1X
i=0

M i
�
e��

�T
�i+1

"n�i+1 +M
nY
i=1

�
Me��

�Ti
�
kxk
!
:

and for t = �n+1 we obtain assertion (5.11) for n+ 1, since

k' (�n+1; x; vn+1)k

< e��
�Tn+1"n+2 +Me��

�Tn+1

n�1X
i=0

M i
�
e��

�T
�i+1

"n�i+1 +
n+1Y
i=1

�
Me��

�Ti
�
kxk

< e��
�T "n+2 +

n�1X
i=0

M i+1
�
e��

�T
�i+2

"n+1�i +
n+1Y
i=1

�
Me��

�Ti
�
kxk

=

nX
i=0

M i
�
e��

�T
�i+1

"n+2�i +

n+1Y
i=1

�
Me��

�Ti
�
kxk :
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Thus assertion (5.11) holds for all n. For t 2 [�n; �n+1] ; n � 0, inequalities (5.12) and
(5.11) and, �nally, (5.4) yield

k'(t; x; vn+1)k

� "n+2 +M
n�1X
i=0

M i
�
e��

�T
�i+1

"n�i+1 + e��
�(t��n)M

nY
i=1

�
Me��

�Ti
�
kxk

� "n+2

"
nX
i=0

�
Me��

�T

"

�i#
+ e��(t��n)M

nY
i=1

�
Me��

�Ti
�
kxk :

By (5.5) Me��
�Tn < e��Tn , and (5.3) follows, since for t 2 [�n; �n+1]

k'(t; x; vn+1)k <
3

2
"n+2 + e��(t��n)M

nY
i=1

e��Ti kxk < 2"n+2 +Me��t kxk :

An easy consequence is the following observation which shows that we have con-
structed a stabilizing set of control functions.

Lemma 5.2. Under the assumption of Lemma 5.1, de�ne an L"-function  by

(t) := "n+1 for all t 2 [�n; �n+1) and n � 0:

Then the set R� is (; "; �;M)-stabilizing, i.e., it is a set of the form R(; "; �;M)
with the property that for every x 2 K there is v 2 R� with

k'(t; x; v)k < (t) +Me��t kxk for t � 0: (5.13)

Proof. Note that 2" < 1. Assertion (5.13) follows from inequality (5.3) showing
that for t 2 [�n; �n+1) ; n � 0,

k'(t; x; v)k < 2"n+2 +Me��t kxk s < "n+1 +Me��t kxk :

The next theorem establishes the announced relation between the stabilization
bit rate and the stabilization entropy.

Theorem 5.3. Consider a control system of the form (2.1) and suppose that
K � Rd is a compact neighborhood of the equilibrium x� = 0. Assume that there are
constants M > 1 and �� > 0 such that for all 0 6= x 2 K there is u 2 U with

k'(t; x; u)k < Me��
�t kxk for all t � 0: (5.14)

Then for � 2 (0; ��) the stabilization bit rate and the stabilization entropy satisfy

bstab(�;M) � log2 e � hstab(��;M) <1:

Proof. By Theorem 3.3 the stabilization entropy for �� is �nite. Hence it remains
to show the �rst inequality. In the proof, we will use the natural logarithm also for
the bit rate, and at the end we will use the second part of Remark 2.8. Throughout
the proof, the constant M remains �xed, so we omit this argument. Let " > 0 and
observe that for every n � 0

lim
T 0!1

1

T 0
ln sstab(T

0; "n+2; ��) � lim
"0&0

lim
T 0!1

1

T 0
ln sstab(T

0; "0; ��);
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Fix � > 0. Then there are Tn > 1 , arbitrarily large, such that

1

Tn
ln sstab(Tn; "

n+2; ��) � lim
"0&0

lim
T 0!1

1

T 0
ln sstab(T

0; "0; ��) + �: (5.15)

Choose Tn large enough such that condition (5.1) in Lemma 5.1 is satis�ed. Then
hypothesis (5.14) and Lemma 2.3 show that there are �nite (T; "n+2; ��)-spanning
sets Sn as assumed in Lemma 5.1.

By the construction in Lemma 5.1 there is for every � 2 (0; ��) a set R� which
by Lemma 5.2 may be written as R� = R(; "; �). On an interval [�n�1; �n] controls
in Sn are used, hence their number is at most sn = sstab(Tn; "

n+2; ��). Thus the
number of restricted controls on [0; �n] ; n � 1, is

#R�n(; "; �) =
nY
i=1

sstab(Ti; "
i+2; ��):

Hence one �nds

1

�n
ln#R�n(; "; �) �

1

�n
ln

"
nY
i=1

sstab(Ti; "
i+2; ��)

#
=
1

�n

nX
i=1

ln sstab(Ti; "
i+2; ��):

Now observe that the right hand side is a convex combination of

1

Ti
ln sstab(Ti; "

i+2; ��); i = 1; :::n,

since

1

Ti + Tj

�
ln sstab(Ti; "

i+2; ��) + ln sstab(Tj ; "
j+2; ��)

�
=

Ti
Ti + Tj

1

Ti
ln sstab(Ti; "

i+2; ��) +
Tj

Ti + Tj

1

Tj
ln sstab(Tj ; "

j+2; ��):

Together with (5.15) this implies for all n

1

�n
ln#R�n(; "; �) � lim

"0&0
lim

T 0!1

1

T 0
ln sstab(T

0; "0; ��) + �:

For n!1 this yields

lim�!1
1

�
ln#R� (; "; �) � lim

"0&0
lim

T 0!1

1

T 0
ln sstab(T

0; "0; ��) + �

and, since � > 0 is arbitrary,

lim�!1
1

�
ln#R� (; "; �) � lim

"0&0
lim

T 0!1

1

T 0
ln sstab(T

0; "0; ��) = hstab(�
�).

This remains true for the in�mum over all L"-functions  and then for the limit for
"& 0, and we conclude, using Remark 2.8,

bstab(�;M) = log2 e � lim
"&0

inf
R(;";�)

lim
T 0!1

1

T
ln#RT (; "; �) � log2 e � hstab(��;M):
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For linear control systems, one gets an easy corollary.
Corollary 5.4. Consider a linear control system of the form (4.1) with 0 2 U

and let K be a compact neighborhood of the origin such that for some constantsM > 1
and �� > 0 and all initial values 0 6= x 2 K there is a control u 2 U with

k'(t; x; u)k < Me��
�t kxk for all t � 0:

Then for all � 2 (0; ��) the stabilization bit rate satis�es

bstab(�;M) � log2 e � hstab(�;M) = log2 e �
X

Re�i>��
(�+Re�i) : (5.16)

Proof. Theorem 4.2 implies for all � 2 (0; ��) that the equality in (5.16) holds.
In order to show the inequality, choose �0 with � < �0 < �� such that the eigenvalues
� of A satisfy Re� > � i¤ Re� > �0. Then hstab(�0;M) = hstab(�;M) and Theorem
5.3 implies the inequality.

For small decay rate �, we can improve this estimate using asymptotic invariance
entropy de�ned in Colonius and Kawan [3, De�nition 5]. We specialize and slightly
modify it for our purposes. Consider a linear control system of the form (4.1). Let
K be a compact set with nonvoid interior. Fix " > 0 and times T > T0 � 0. A set
S � U is called (T; T0; ";K)-spanning if for every x 2 K there is u 2 S with

dist('(t; x; u);K) := minfkx� yk j y 2 Kg < " for all t 2 [T0; T ]:

The minimal cardinality of such a set is ras(T; T0; ";K) and we de�ne the asymptotic
invariance entropy as

has(K) := lim
"&0

lim
T0!1

limT!1
1

T
ln ras(T; T0; ";K):

Then the following result holds.
Proposition 5.5. Consider a linear control system of the form (4.1). Let K be

a compact neighborhood of the origin, let 0 2 U , and suppose that there is T0 > 0 such
that for all x 2 K there is a control u 2 U with '(t; x; u) 2 K for all t � T0. Then

has(K) �
X

Re�i>0

Re�i;

where summation is over all eigenvalues of A with Re�i > 0.
Proof. This follows similarly as Colonius and Kawan [2, Theorem 5.1]. The

di¤erences are that here (i) we consider asymptotic invariance instead of invariance
(ii) we do not assume compactness of the control range and (iii) the limit inferior for
T !1 is considered instead of the limit superior. If A has only unstable eigenvalues,
[3, Lemma 5] which does not need compactness of the control range U shows that
points (i) and (ii) can be dealt with. Concerning (iii), a look at the proof also shows
that it is valid for the limit inferior instead of the limit superior for T !1. Finally,
the case of general A is treated as in step 2 of the proof for Lemma 4.1, above, using
projection to the unstable subspace.

We obtain the following characterization of minimal bit rates for stabilization of
linear systems.

Theorem 5.6. Let the assumptions of Corollary 5.4 be satis�ed. Then the min-
imal bit rate for stabilization satis�es

inf
�>0

bstab(�;M) = log2 e � inf
�>0

hstab(�;M) = log2 e �
X

Re�i>0

Re�i:
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Proof. It only remains to show that bstab(�;M) � log2 e�
P

Re�i>0
Re�i for � > 0.

Consider for " > 0 and  2 L" a (; "; �;M)-stabilizing set R(; "; �;M), hence for
all x 2 K there is u 2 R(; "; �;M) with

k'(t; x; u)k < (t) +Me��t kxk for all t � 0:

By compactness of K one �nds T1 > 0 such that for every x 2 K there is u 2
R(; "; �;M) with '(t; x; u) 2 K for all t � T1. Now for " > 0 and all T > T0 � T1
the set of controls �

uj[0;T ] j u 2 R(; "; �;M;K)
	

is obviously (T; T0; ";K)-spanning. Hence

ras(T; T0; ";K) � #R(; "; �;M;K):

Taking the logarithm, dividing by T and taking the limit for T ! 1 one �nds for
every " > 0 and T0 � T1

limT!1
1

T
ln ras(T; T0; ";K) � limT!1

1

T
ln#R(; "; �;M;K):

Taking the limit for T0 !1 and then the limit for "& 0, one obtains

has(K) = lim
"&0

lim
T0!1

limT!1
1

T
ln ras(T; T0; ";K)

� lim
"&0

limT!1
1

T
ln#R(; "; �;M;K)

= [log2 e]
�1 � bstab(�;M;K):

By Proposition 5.5 the assertion follows.
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