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1. Introduction

Nearly (or almost) invariant sets for random dynamical systems are subsets of the state

space that are left only after long time and, maybe, are visited again after even longer

times. The present paper takes up the approach developed in Colonius et al. [9] for Markov

diffusions. We develop an analogous theory for random diffeomorphisms and also use

results from Zmarrou and Homburg [21] who studied bifurcation problems based on an

eigenvalue analysis of the associated Perron-Frobenius operator.

Related work includes approaches based on transfer operator theory combined with set

oriented numerics in Dellnitz and Junge [10,11], Froyland [15], Froyland and Dellnitz [16]

and graph theoretic methods, Dellnitz et al. [12], as well as extensions of metastability in

the classical Freidlin/Wentzell theory [14] in Schütte et al. [20] and Bovier et al. [5,6]; and

the analysis of dominant eigenvalues of transfer operators [13,19].

The paper [9] introduces the notion of nearly invariant sets as a way to formalize the

idea of almost invariance. Here the maximal amplitudes of the noise process are varied and

nearly invariant sets can be described by properties of an associated deterministic control

system. The escape times from a nearly invariant set become unbounded as the critical

amplitude is approached. However, no quantitative estimates on the escape times are

given. On the other hand, a loss of invariance appears to be related to a bifurcation in the

considered random dynamical system, when the maximal amplitude of the noise process is

considered as a bifurcation parameter. In this context [21] analyzed random

diffeomorphisms and, in particular, could show that the average escape times from a

neighbourhood of the support of a stationary invariant measure can be estimated from

below as a function of the unfolding parameter.
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The present paper concentrates on the behaviour of the supports of stationary

measures and on exit times. The aim is to provide conditions under which the system

indeed leaves the support of an invariant measure under small perturbations (note that

the pertinent result in Ref. [21] on first exit times does allow infinite escape times

for a near a0). For this purpose, we transfer the approach from Ref. [9] to families of

random diffeomorphisms depending on arbitrary bifurcation parameters and introduce

the notion of local transience for nearly invariant sets. The analysis is based, as in

Ref. [9], on the relations between random systems and associated deterministic control

systems. In particular, we analyze loss of invariance via control sets; their invariance

properties are studied here in a way which is similar to the one in Gayer [17] for

flows.

It is essential here that ergodic invariant measures have smooth densities and that the

transfer operators as well as its eigenvalues and eigenspaces depend smoothly on

the considered random diffeomorphisms. As shown in Ref. [21], this can be guaranteed

under the assumptions stated in Section 2. Section 3 analyzes control sets, i.e. subsets

of complete approximate controllability and their parameter dependence. Section 4

relates control systems to random diffeomorphisms and shows that the invariant

control sets coincide with the supports of the stationary measures. In Section 5,

we introduce the notions of near invariance and local transience and characterize

them via the associated control system. Theorem 5 shows that invariant control

sets, which lose their invariance due to a parameter change, are locally transient,

nearly invariant sets. Finally, upper and lower bounds on the first exit times from these

sets are given.

2. Preliminaries

In this section, we introduce families of random diffeomorphisms and cite several

pertinent results from Zmarrou and Homburg [21]. Then we introduce associated discrete-

time control systems.

2.1 Random diffeomorphisms

The adjective smooth stands for C 1. Let M be a smooth d-dimensional compact

Riemannian manifold with measure m induced by the Riemannian structure and let D be a

closed domain in d-dimensional Euclidean space. Smoothness of a function g on D is to be

understood in the sense that g can be extended to a smooth function on a neighbourhood

of D. A random differentiable map is a smooth map f : M £ D! M; ðx; vÞ 7! f ðx; vÞ,

i.e. depending on a random parameter v [ D drawn from a measure n on D with smooth

density function g : D! R; v 7! gðvÞ. A random diffeomorphism is a random map so that

x 7! f ðx; vÞ is a diffeomorphism for each v.

The following standing assumptions will be made.

(H1): The set D is a domain in Rd with a smooth boundary.

(H2): The map v 7! f ðx; vÞ is injective for each x.

(H3): For Lebesgue almost all v [ D one has gðvÞ . 0:

From hypotheses (H1) and (H2), it follows that the number of random parameters is

equal to the dimension of the state space M. Hypothesis (H3) implies that the support of the

measure n coincides with D.
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A smooth random map gives rise to a discrete-time Markov process through the

transition functions

Pðx;AÞ ¼

ð
{v; f ðx;vÞ[A}

dnðvÞ for Borel sets A:

The stationary measures m are probability measures on M with

mðAÞ ¼

ð
suppm

Pðx;AÞdm for all Borel sets A:

Consider a family f a : M £ D! M; ðx; vÞ 7! f aðx; vÞ; of random differentiable maps

where the parameter a is from an interval I and f is continuous with respect to ða; x; vÞ. For

a sequence u ¼ ðu0; u1; u2; . . . Þ in U ¼ DN, let qðuÞ U ðu1; u2; . . . Þ denote the time shift

on U and abbreviate f 1
aðx; uÞ U f aðx; u0Þ, f k

aðx; uÞ ¼ f 1
aðf

k21
a ðx; uÞ;q k21ðuÞÞ; k . 1.

The product measure n1 on U is q-invariant.

We write RkðMÞ for the space of C k diffeomorphisms f on M with f ðx; vÞ C k jointly in

x [ M and v [ D depending on a random parameter v from D through a distribution with a

C k density function g. An ergodic stationary measure m for the smooth random map f is a

probability measure on M such that m £ n1 is an ergodic invariant measure for the skew

product system

S : M £ U ! M £ U; Sðx; uÞ ¼ ð f ðx; u0Þ;qðuÞÞ: ð1Þ

Then, see Ref. ([21], Theorem 1.3), a random diffeomorphism f [ R1ðMÞ possesses a

finite number of ergodic stationary measures with mutually disjoint supports.

These measures are absolutely continuous with respect to Lebesgue measure with C 1

densities.

The following result ([21], Theroem 1.13) gives an estimate from below for average

escape times. For a set W , M and x [ W ; u [ U let

xaðx; u;WÞ U min{k [ N; f k
aðx; uÞ � W}

be the first exit time from W starting in x [ W .

Theorem 1. Let f a;a [ I, be a family of random diffeomorphisms in R1ðMÞ satisfying

hypotheses (H1)– (H3) with the parameter a from an open interval I. Let ma0
be a

stationary measure of f a0
for some a0 [ I and let W be an open neighbourhood of the

support of ma0
such that no other stationary measure of f a0

has support intersecting clW.

Then for all k [ N there is Ck . 0 such that

ð
W

ð
U
xaðx; u;WÞdn1ðuÞdmðxÞ $ Ckja2 a0j

2k
:

This result shows that the expected escape times averaged over W grow faster than

every polynomial in 1=ja2 a0j.

The simplest example where this result applies is of a family f a of random

diffeomorphisms on the circle R=Z exhibiting a random saddle node bifurcation [21].
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Example 1. Let f : R=Z £ ½21; 1�! R=Z be given by

f aðx; vÞ ¼ x þ
s

2p
cosð2pxÞ þ Av þ a mod 1; ð2Þ

where 0 , s , 1. The random parameter v is drawn from a distribution supported

on [21,1]. Consider a small positive value of the noise amplitude A. For a0 ¼ s=2p2 A,

the extremal graph f a0
ð·; 1Þ is tangent to the diagonal at a point x0 and a random saddle node

bifurcation occurs. Here f a0
admits a stationary measure supported on an interval Da0

bounded by x0 as indicated in Figure 1 (left). For a slightly below a0, there is a stationary

measure supported on an interval D a that varies continuously with a, see Figure 1 (right).

For a slightly above a0 there is no stationary measure that is supported on an interval (there

is a stationary measure with support equal to R=Z). Theorem 1 bounds expected escape

times from a neighbourhood W of Da0 .

2.2 Discrete-time control systems

With a random diffeomorphism f depending on a parameter a, we associate the discrete

time control system (again depending on the parameter a)

xnþ1 ¼ f aðxn; unÞ; un [ D: ð3Þ

In the following, we suppress the index a in the notation where it is not relevant.

For u [ U recall that f 1ðx; uÞ U f ðx; u0Þ; f kðx; uÞ ¼ f 1ðf k21ðx; uÞ;q k21ðuÞÞ; k . 1.

We also write wðk; x0; uÞ ¼ f kðx0; uÞ. The set U of control functions u becomes a

Figure 1. The random diffeomorphisms f a given by (2); drawn are the extremal graphs f að·;^1Þ
for a ¼ a0 and slightly below (see text). The intervals indicate the support of the stationary measure.
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metric space by

dðu; vÞ U
X1
k¼0

22k kuk 2 vkk

1 þ kuk 2 vkk
:

By compactness of D every sequence (u j) of control functions contains a subsequence

converging to some u [ U. Furthermore

x j ! x in M and uj ! u in U implies

f kðx j; ujÞ! f kðx; uÞ uniformly for bounded k:
ð4Þ

The reachable set at time k [ N from x is given by

Oþ
k ðxÞ U {f kðx; uÞ; u [ U}; and OþðxÞ U

[
k[N

Oþ
k ðxÞ:

Furthermore, define

O2
k ðxÞ U {y [ M; f kðy; uÞ ¼ x for some u [ U}:

Lemma 1. Hypotheses (H1) and (H2) imply that for every x [ M the map v 7! f ðx; vÞ :

D! M is continuously differentiable with Dvf ðx; vÞ a linear isomorphism.

Proof. This is clear, since this map is smooth and injective. A

An immediate consequence of this result is that the control system is accessible, i.e. the

sets Oþ
1 ðx0Þ U {f ðx0; vÞ; v [ D} and O2

1 ðx0Þ U {x [ M; f ðx; vÞ ¼ x0 for some v [ D}

have nonvoid interiors.

3. Control sets

In this section, we analyze subsets of complete controllability, their boundaries, and their

parameter dependence.

First we consider controllability properties of system (3) assuming from now on that

the diffeomorphisms in (3) are real analytic.

Definition 1. A subset D , M with nonvoid interior is a control set for (3) if it is a

maximal set with D , clOþðxÞ for all x [ D. An invariant control set is a control set D

with clD ¼ clOþðxÞ for all x [ D. The core of a control set D is given by

core D U {x [ int D; intðOþðxÞ> DÞ – Y and intðO2ðxÞ> DÞ – Y}:

By accessibility, one finds that the closure of a control set coincides with the closure of

its interior. Furthermore, a set D , M is an invariant control set if clD ¼ clOþðxÞ for all

x [ D and D is a maximal set with this property. We remark that, in contrast to continuous

time, control sets need not be connected.
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Proposition 1. The number of invariant control sets in the compact state space M is finite,

they have nonvoid interiors, and for every x [ M there exist n [ N and u [ U with

f nðx; uÞ [ intC for some invariant control set C.

Proof. This follows as in the continuous-time case (see Ref. [8]). A

The following properties of the core have been shown by Albertini and Sontag ([1],

Lemmas 7.3, 7.8 and 7.9), cp. also Bauer [4]; they are a consequence of analyticity.

Lemma 2. Consider a control set D of the control system (3). Then core D is open and

coreD , OþðxÞ for all x [ D and cl coreD ¼ cl intD ¼ clD:

The time reversed system is

xnþ1 ¼ f *ðxn; unÞ where f *ð·; vÞ U f 21ð·; vÞ; v [ D:

It follows easily from the definition that the control sets D of the original system and the

control sets D* of the time reversed system, are in bijective correspondence and that

coreD ¼ coreD*.

The following result shows lower semicontinuity of control sets depending on the

parameter a, under the conditions of Section 2.1. (We note that it holds under much

weaker assumptions than (H1) and (H2).)

Theorem 2. Let Da0 be a control set for control system ð3Þa0 with a0 [ I. Then there is

d . 0, such that for every a with 0 , a2 a0 , d, there exists a unique control set Da

for ð3Þa with the following property: for every compact subset K , coreðDa0Þ, there is a

positive number dðKÞ , d such that K , coreðDaÞ for all 0 , a2 a0 , dðKÞ. The map

a 7! cl Da is lower semicontinuous in a ¼ a0 at a0 with respect to the Hausdorff metric.

Proof. Fix a point x [ coreðDa0Þ. There are k [ N and u [ U with y ¼ f k
a0
ðx; uÞ [

coreðDa0Þ. By the implicit function theorem applied to the map I £ Dk ! M; ða;wÞ 7!

f k
aðx;wÞ, there are d1

x . 0 and a neighbourhood V0ðyÞ , Oa;þ
k ðxÞ for all a with

0 , a2 a0 , d1
x . Since x is also in the core of the control set for the time reversed

system, there are u1 [ U and l [ N with wa0 ðl; y; u1Þ ¼ x. Due to continuous dependence

on the parameter, there exist 0 , dx , d1
x and an open neighbourhood V1ðyÞ , V0ðyÞ,

such that for every a with 0 , a2 a0 , dx there is ya [ V1ðyÞ with f l
aðy

a; u1Þ ¼ x.

Therefore it follows that intOa;2
l ðxÞ> V1ðyÞ – Y and that ya is contained in a certain

control set ~Da (which may depend on x). Obviously ya is in the interior of this control set,

i.e. there is a neighbourhood VðyaÞ , VðyÞ of ya. We would like to show that x is in the

interior of ~Da. There is a control w [ U with f k
aðx;wÞ ¼ ya. Then the set

W U ðf k
aÞ

21ðVðyaÞ;wÞ> waðl;VðyaÞ; u1Þ, where ðf k
aÞ

21ð·;wÞ denotes the inverse mapping

of f k
að·;wÞ, is a neighbourhood of x. Obviously W , ~Da and x [ int ~Da. It is clear, that

intðOþðxÞ> ~DaÞ – Y and intðO2ðxÞ> ~DaÞ – Y, i.e. x [ coreð ~DaÞ. Now fix a compact

subset K , coreðDa0Þ. Then the arguments above show that dx may be chosen

independent of x, i.e. there is dK . 0 such that for all 0 , a2 a0 , dK there is a unique

control set ~D
a

K with the inclusion K , core ~D
a

K . Finally, choose a sequence of compact

subsets Kn , Knþ1 , core Da0 with K0 ¼ K and cl <nKn½ � ¼ core Da0 . Then the control

F. Colonius et al.132
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sets Da
Kn

constructed above coincide and hence the first assertion of the theorem holds with

d U dK0
. Lower semicontinuity of a 7! cl Da follows from cl coreðDaÞ ¼ clDa. A

For continuous time systems, a control set can only be left through points on the

boundary. Clearly, in the discrete time setting, points in the interior of a control set can

leave this set without hitting the boundary. Nevertheless, a classification of the boundary

points yields information about invariance of control sets. This result is due to Class [7];

for convenience of the reader, we include the proof.

Lemma 3. Let D be a control set and assume that the control range D is connected. Then D

is an invariant control set iff D is closed.

Proof. Let x [ clD. Then x [ clOþðyÞ for all y [ D. Furthermore, we have clOþðxÞ ,
clOþðyÞ , clD and intOþðxÞ – Y. Hence there is a point y [ intOþðxÞ> D: Using the

definition of invariant control sets, we find clD ¼ clOþðyÞ , clOþðxÞ; i.e. clOþðxÞ ¼ clD.

By maximality of control sets we see that x [ D; hence cl D ¼ D: For the converse, let D

be a closed control set. We have to show that for all x [ D one has clOþðxÞ , clD, i.e.

OþðxÞ , D. For every y [ D there are k [ N and a control u with wðk; y; uÞ [ int D. By

continuity, there is an open neighbourhood VðyÞ with wðk;VðyÞ; uÞ , int D. Hence there is

an open set V containing D, such that for all z [ V one has OþðzÞ> int D – Y and hence

D , clOþðzÞ. Assume contrary to the assertion that there are x [ D and a control u with

wð1; x; uÞ � D. Since D , clOþðxÞ there is y [ OþðxÞ> D. There is a control u with

wð1; x; uÞ [ D. Hence clOþ
1 ðxÞ> D – Y and clOþ

1 ðxÞ � D. Since by assumption the

control range D is connected, also clOþ
1 ðxÞ is connected, and hence there is

z [ OþðxÞ> ðVnDÞ. It follows that z [ clOþðyÞ for all y [ D and D , clOþðzÞ as

shown above. By the definition of control sets, it follows that z [ D contrary to the

assumption. A

Definition 2. Let D be a control set. Define the following subsets of the boundary ›D:

›ex D U {x [ ›D; there is y [ int D with x [ OþðyÞ};

›en D U {x [ ›D; there is y [ int D with y [ OþðxÞ};

›tg D U {x [ ›D;OþðxÞ> int D ¼ Y and O2ðxÞ> int D ¼ Y}:

These sets are called the exit, entrance and tangential boundaries, respectively.

Lemma 4. Assume that the control range D is connected. (i) The three sets ›ex D, ›en D and

›tg D form a decomposition of ›D. (ii) The sets ›ex D and ›en D are open in ›D

and ›D > D ¼ ›en D. In particular, D is an invariant control set iff ›D ¼ ›en D:

Proof. (i) Clearly, the union of these three sets coincides with ›D and ›tg D has void

intersection with ›ex D and ›en D. Now assume that there is x [ ›ex D > ›en D. Then there

are y1; y2 [ int D, times t1; t2 [ N and controls u1; u2 [ U such that x ¼ wðt1; y1; u1Þ and

y2 ¼ wðt2; x; u2Þ. Due to continuity, there are neighbourhoods Vðy1Þ , int D;Vðy2Þ ,
int D and VðxÞ , M such that VðxÞ ¼ wðt1;Vðy1Þ; u1Þ and Vðy2Þ ¼ wðt2;VðxÞ; u2Þ.

But then VðxÞ , D, contradicting x [ ›D. (ii) Openness of ›ex D and ›en D in ›D is

Journal of Difference Equations and Applications 133
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immediate from the definitions. Similarly, the assertion ›D > D ¼ ›en D is an easy

consequence of the definitions. Lemma 3 shows that the last assertion holds. A

Example 2. For f a given by (2), and a # a0 near a0, there are an invariant control set and a

control set varying continuously with a and colliding for a ¼ a0 at x0. The reader can

connect the above notions to this example.

4. Stationary measures and invariant control sets

Next, we proceed to describe the relations between random diffeomorphisms and control

systems. We show that the supports of stationary measures coincide with the invariant

control sets and that on every invariant control set there is a unique ergodic stationary

measure. The proofs essentially follow the arguments in Arnold and Kliemann ([2],

Proposition 3.12), where the (much more complicated) continuous-time case is treated.

We continue to assume that the diffeomorphisms f a are real analytic and that the range

D of the noise is connected. Note that some of our results, such as the next two lemmata,

hold under weaker conditions.

The following lemma shows that finite time tubes around trajectories of the associated

control system have positive probability. Recall that the n-step transition function is

defined recursively by

P1ðx;AÞ ¼ Pðx;AÞ;Pnðx;AÞ U

ð
M

Pðx; dyÞPn21ðy;AÞ:

Lemma 5. (i) Let N [ N and consider a function u0 : {0; 1; . . . ;N} ! D. Let nN be the

N-fold product measure on DN of n and, for 1 . 0,

VN
1 ðu

0Þ U {u : {0; 1; . . . ;N} ! D; uk 2 u0
k

�� �� , 1 for all k ¼ 0; 1; . . . ;N}:

Then nNðVN
1 ðu

0ÞÞ . 0.

(ii) Suppose that y [ Oþ
N ðxÞ for the associated control system. Then for every

neighbourhood VðyÞ of y

PNðx;VðyÞÞ . 0:

Proof. (i) This follows since the measure n is absolutely continuous and, by hypothesis

(H3) its support coincides with D. Thus also the measure nN is absolutely continuous and

its support coincides with DN .

(ii) Let y ¼ f Nðx; u0Þ. By continuity, there is 1 . 0 such that f Nðx; uÞ [ VðyÞ for all

u [ VN
1 ðu

0Þ and PNðx;VðyÞÞ . 0 follows. A

Lemma 6. For every x [ M one has

supp Pðx; ·Þ ¼ f ðx;DÞ:

Proof. The inclusion supp Pðx; ·Þ , f ðx;DÞ is obvious. For the converse, let

y [ f ðx;DÞ ¼ Oþ
1 ðxÞ. By Lemma 5(ii), Pðx;VðyÞÞ . 0 for every neighbourhood of y

proving the assertion. A

F. Colonius et al.134
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Lemma 7. For every invariant control set C there exists a stationary measure m with

suppm , C: Conversely, for every stationary measure m the support is contained in the

union of all invariant control sets.

Proof. Recall that there are only finitely many invariant control sets C1; . . . ;Cl, and these

are compact. For an invariant control set C, the inclusion

supp Pðx; ·Þ ¼ f ðx;DÞ , C

holds for every x [ C. Hence there exists a stationary measure m with suppm , C:
Conversely, let m be a stationary measure and suppose, contrary to the assertion, that

there is set B with mðBÞ . 0 and

B >
[

Ci ¼ Y;

where the union is taken over the finitely many invariant control sets Ci in M. Since m has a

density, we may assume that B , suppm is open. Let

A U suppmn
[

Ci:

Take a point x0 [ B. Then, by Proposition 1, there are n [ N and u0 [ U such that

f nðx0; u0Þ [ int C for some invariant control set C. By Lemma 5 this implies that there is

1 . 0 with

Pnðx;CÞ $ 1 for all x [ B ð5Þ

(decreasing B, if necessary). Furthermore,

mðAÞ ¼

ð
suppm

Pnþ1ðx;AÞdm ¼

ð
suppm><Ci

Pnþ1ðx;AÞdmþ

ð
suppmn<Ci

Pnþ1ðx;AÞdm

¼

ð
A

Pnþ1ðx;AÞdm;

by invariance of the Ci. For x [ B, we find by the Chapman-Kolmogorov equation and

using again invariance of C

Pnþ1ðx;AÞ ¼

ð
M

Pnðx; dyÞPðy;AÞ ¼

ð
MnC

Pnðx; dyÞPðy;AÞ #

ð
MnC

Pnðx; dyÞ ¼ Pnðx;MnCÞ

¼ Pnðx;MÞ2 Pnðx;CÞ # 1 2 1:

This implies

ð
A

Pnþ1ðx;AÞdm ¼

ð
AnB

Pnþ1ðx;AÞdmþ

ð
B

Pnþ1ðx;AÞdm # mðAnBÞ þ mðBÞð1 2 1Þ
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and we obtain the contradiction

mðAÞ ¼ mðAnBÞ þ mðBÞ # mðAnBÞ þ mðBÞð1 2 1Þ , mðAnBÞ þ mðBÞ ¼ mðAÞ:

A

Lemma 8. Let m be a stationary measure for the random diffeomorphism f.

(i) If suppm> C – Y for some invariant control set C, then C , suppm.

(ii) If m is ergodic, then suppm> Ci – Y for invariant control sets Ci; i ¼ 1; 2, implies

C1 ¼ C2.

(iii) Suppose that suppmi > C – Y for ergodic measures mi; i ¼ 1; 2, and an invariant

control set C. Then m1 ¼ m2.

Proof. (i) Suppose, contrary to the assertion, there is x [ Cnsuppm. By Lemma 2, one has

C ¼ cl core C. Hence we may assume that x [ core C. There is an open neighbourhood

VðxÞ , C with VðxÞ> suppm ¼ Y. Pick y [ suppm> C. Then, by Lemma 2,

x [ core C , OþðyÞ, and Lemma 5 shows that there is n [ N with

Pnðy;VðxÞÞ . 0

Since the support is invariant, this is a contradiction.

(ii) This is immediate from ergodicity, since the assumption implies that suppm> C1

and suppm><i–1Ci are invariant sets with positive measure.

(iii) Compare Arnold and Kliemann [3]. A

Together, Lemmas 7 and 8 show the following theorem.

Theorem 3. Let m be an ergodic stationary measure for the random diffeomorphism f.

Then the support of m is an invariant control set of the associated control system.

Conversely, for every invariant control set C there exists a unique invariant measure m

with support equal to C.

5. Nearly invariant sets

In this section, we introduce nearly invariant and locally transient sets for families of

random diffeomorphisms and characterize them by properties of the associated control

systems. We continue to assume that the diffeomorphisms f a are real analytic and that the

range D of the noise is connected.

Recall that the first exit time from a set W , M starting in x [ W is

xaðx; u;WÞ U min{k [ N; f k
aðx; uÞ � W}:

Definition 3. A closed set A , M is nearly invariant for a sequence an ! a0 at

x0 [ int A, if it has the following properties: (i) for all n [ N the first exit time of x0

from A satisfies xan
ðx0; u;AÞ , 1 with positive probability; (ii) for all x [ int A one has

xan
ðx; u;AÞ!1 almost surely for n !1 (here xan

ðx; u;AÞ ¼ 1 is allowed) and for all

x [ A one has xa0
ðx; u;AÞ ¼ 1.
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If these properties hold for all x0 [ int A, we call the set A nearly invariant.

Definition 4. A closed set A , M is locally transient for a sequence an ! a0 at

x0 [ int A, if there is a neighbourhood W of A such that for all n [ N the first exit time of

x0 from W satisfies xan
ðx0; u;WÞ , 1 with positive probability.

If this property holds for all x0 [ int A, we call the set A locally transient.

Remark 1. This notion of near invariance is analogous to the one introduced in Ref. [9] for

Markov diffusion systems. However, in the present paper arbitrary parameters a are

allowed, not just the maximal amplitude of a random disturbance as in Ref. [9]. In the

latter case, it is clear that existence of a sequence an d a0 with property (ii) implies that

this property holds for all a . a0 with a2 a0 small. For a locally transient set, we require

that the systems with an leave a neighbourhood W of A. Note that the system with an may

return to W at some later time, hence there may exist a stationary measure whose support

intersects or even includes W. Hence transient as well as intermittent bifurcations in the

sense of Ref. [21] are included.

We note the following characterization of locally transient, nearly invariant sets.

Proposition 2. A closed set A , M is a locally transient, nearly invariant set for an ! a0

at x0 [ int A, if and only if there is a neighbourhood W of A with the following properties:

(i) for all n [ N the first exit time of x0 from W satisfies xan
ðx0; u;WÞ , 1 with positive

probability; (ii) for all x [ A one has xan
ðx; u;AÞ!1 almost surely for n !1 and

xa0
ðx; u;AÞ ¼ 1.

Proof. If xaðx0; u;WÞ , 1, then xaðx0; u;AÞ , 1. Hence a set satisfying properties (i) and

(ii) is a nearly invariant set and clearly it is locally transient. The converse is obvious. A

The following result characterizes locally transient, nearly invariant sets by properties

of the associated discrete time control systems.

Theorem 4. Suppose that hypotheses (H1)–(H3) are satisfied for the family f a;a [ I, of

random diffeomorphisms. Let x0 [ int A for some closed set A , M and consider a sequence

an ! a0 in I. Then the set A is a locally transient, nearly invariant set for ðanÞ in x0 if and only

if A is positively invariant for a0 and there is a neighbourhood W of A such that

intðOan;þðx0Þncl WÞ – Y for each n [ N: ð6Þ

Proof. First we show that positive invariance of A and continuity imply property (ii) of

Proposition 2. Positive invariance of A shows that xa0
ðx; u;AÞ ¼ 1 almost surely. Now

assume contrary to the other assertion that there are x [ A and a positive time N such that

Pxðxan
ðx; u;AÞ , NÞ . 0 for all n. Thus (taking a corresponding realization of the noise)

there are controls un with f N
an
ðx; unÞ � A. Then there is a subsequence ðunk Þ such that

unk ! u* [ U. By continuity it follows that f N
ank

ðx; unk Þ! f N
a0
ðx; u*Þ. Then f N

a0
ðx; u*Þ is in

the closure of the complement of A. By positive invariance of A it follows that

f N
a0
ðx; u*Þ [ ›A. Again using continuity with respect to the initial point, one sees that this

contradicts positive invariance of A.

Next we prove that assumption (6) implies property (i) of Proposition 2, i.e. that

Px0
ðxan

ðx; u;WÞ , 1Þ . 0 for all n. Pick an, then there are some open set

V , intðOan;þðx0Þncl WÞ, a positive time N , 1, and a control u0 [ U such that
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wan
ðN; x0; uÞ [ V . By continuous dependence of the solutions on u, there is 1 . 0 such

that for all u in VN
1 ðu

0Þ U u : {0; 1; . . . ;N} ! Dwith kuk 2 u0
kk , 1 for all k

� �
one has

wan
ðN; x0; uÞ [ V . Lemma 5 implies that nNðVN

1 ðu
0ÞÞ . 0. We obtain

Px0
ðxan

ðx0; u;WÞ , 1Þ $ Px0
ðxan

ðx0; u;WÞ # TÞ $ nNðVN
1 ðu

0ÞÞ . 0:

For the converse implication assume that A is a locally transient, nearly invariant set in

x0 [ intA for anð Þ. Then, for a neighbourhood W1 of A with cl W1 , W , one has

xan
ðx0; u; clW1Þ , 1 with positive probability for all n. Thus for every n there is a

realization un of v and a time N such that

f N
an
ðx0; unÞ � cl W1:

Thus f N
an
ðx0; unÞ [ Oan;þðx0Þncl W . Lemma 1 and hypotheses (H1) and (H2) imply that

Oan;þðx0Þ , cl intOan;þðx0Þ:

Since A is closed, we see that for every n condition (6) holds. It remains to show that the set

A is positively invariant for a0. This follows from xa0
ðx; u;AÞ ¼ 1 almost surely. In fact,

if A is not positively invariant, we obtain a contradiction using the same reasoning as

above in the proof that (6) implies property (i) of Proposition 2. A

The following corollary is an analogue of Theorem 3.2 in Ref. [9].

Corollary 1. Suppose that the assumptions of Theorem 4 are satisfied. Then the set A is

nearly invariant in x0 for ðanÞ if and only if the set A is positively invariant for a0 and

intðOan;þðx0ÞnAÞ – Y for each n [ N: ð7Þ

Proof. This follows as in Theorem 4. A

Next we show that invariant control sets, which lose their invariance at a0, are locally

transient, nearly invariant sets. This requires a generalization of Gayer’s continuous time

result ([18], Corollary 24), stating that loss of invariance for increasing control range

(determined by a) implies a discontinuity of a 7! cl Da.

Proposition 3. Let Da0 be an invariant control set.

(i) There is 10 . 0 such that for all a with a2 a0j j , 10 there is a unique control set

Da with the following property: for all compact subsets K , core Da0 there is

11 [ ð0; 10Þ such that K , core Da for all a with 0 , a2 a0 , 11.

(ii) Suppose that the map a 7! cl Da is continuous at a ¼ a0. Then there is 12 [ ð0; 11Þ

such that for all a with 0 , a2 a0 , 12 the Da are invariant control sets.

Proof. (i) This follows from the lower semicontinuity property in Theorem 2.

(ii) By Lemma 4, we have to show that the boundary of Da coincides with its entrance

boundary. Fix a compact neighbourhood K , core Da0 of x0 [ core Da0 and choose

10 . 0 according to (i). For each x [ Da0 there is ux [ U and tx . 0 such that

wa0
ðtx; x; uxÞ ¼ x0. Thus there are 1x [ ð0; 1Þ and an open neighbourhood Vx of x such

that waðtx;Vx; uxÞ , K for all a with 0 , a2 a0 , 1x. Since the invariant control set

Da0 is compact, finitely many of the neighbourhoods Vx cover Da0 . Since the map

a 7! cl Da is continuous at a ¼ a0, one finds that for all points x [ cl Da with
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0 , a2 a0 , 12 that

Y – Oa;þðxÞ> K , Oa;þðxÞ> core Da:

In particular, this is true for all points in the boundary ›Da, i.e. ›Da ¼ ›en Da, and it

follows that these Da are invariant control sets. A

We note the following consequence at discontinuity points.

Proposition 4. Let Da0 be an invariant control set and suppose that the map a 7! clDa is

discontinuous at a ¼ a0. Then there are an ! a0 such that for every compact subset

K , int Da0 there is a neighbourhood W of Da0 such that intðOan;þðx0ÞnclWÞ – Y for all n

and all x0 [ K.

Proof. Discontinuity in the Hausdorff metric means that for a! a0

ðiÞ supx[D a0 dðx; clDaÞ K 0 or ðiiÞ supx[D adðx;Da0 Þ K 0:

Case (i) cannot occur, due to Theorem 2 establishing lower semicontinuity of control sets.

In case (ii), one finds 1 . 0, an ! a0, and xn [ Dan such that dðxn;Da0Þ $ 1. By

Theorem 2 again and by approximate controllability in Dan , we may assume that xn [
Oan;þðx0Þ for all x0 [ K , int Da0 for all n [ N. Hence there is a neighbourhood W of

Da0 such that intðOan;þðx0Þncl WÞ – Y for all x0 [ K. A

The following theorem shows the announced result on locally transient, nearly

invariant sets.

Theorem 5. Assume that the family of random diffeomorphisms f a;a [ I, satisfies

hypotheses (H1)– (H3). Let Da0 be an invariant control set of the associated control

system (3) and suppose that the map a 7! clDa from Proposition 3 is not continuous in

a ¼ a0. This holds in particular, if there are bn ! a0 such that the control sets Dbn are

not invariant. Then Da0 is a locally transient, nearly invariant set for a sequence

an ! a0.

Proof. If there are bn ! a0 such that the control sets Dbn are not invariant,

discontinuity in the Hausdorff metric follows from Proposition 3(ii). Let x0 [ int Da0 .

By Proposition 4(l) there are an ! a0 and a neighbourhood W of Da0 such that

intðOan;þðx0ÞnclWÞ – Y for all n. Since Da0 is a control set, this holds for all x0 [
int Da0 and since Da0 is an invariant control set, it is positively invariant for a0. Hence

by Theorem 4(l) the set Da0 is a locally transient, nearly invariant set in x0 for a

sequence an ! a0. A

Finally, we consider escape times from a nearly invariant, locally transient set A. We

restrict ourselves to the situation of Theorem 5. The following result shows that exit times

are finite and polynomially bounded below in 1=jan 2 a0j.

Theorem 6. Consider a family f a;a [ I, of random diffeomorphisms in R1ðMÞ satisfying

hypotheses (H1)– (H3) with the parameter a from an open interval I. Let ma0
be an ergodic

stationary measure of f a0
for some a0 [ I. Then the support of ma0

is an invariant control

set Da0 and there is a neighbourhood W of Da0 such that no other stationary measure of

f a0
has support intersecting cl W. Assume that there are bn ! a0 such that the control sets

Dbn from Proposition 3 are not invariant.
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(i) Then Da0 is a locally transient, nearly invariant set for a sequence an ! a0 and for

all k [ N there are constants ck . 0 withð
W

ð
U
xan

ðx; u;WÞ dn1ðuÞ dmðxÞ $ ckjan 2 a0j
2k

; ð8Þ

(ii) there is a neighbourhood V of Da0 such that for every compact subset

Y – K , int Da0 there are times Tn . 0 such that for all x [ K

xan
ðx; u;VÞ # Tn with positive probability: ð9Þ

Proof. By Proposition 3, the support of each ergodic stationary measure is an invariant

control set Da0 . Then existence of the neighbourhood W follows, since there are only

finitely many invariant (and compact) control sets. Now Theorem 1 implies the existence

of constants ck . 0 such that (8) holds. It remains to show the existence of the upper

bounds Tn in (9). Theorem 5 shows that Da0 is a locally transient, nearly invariant set for a

sequence an ! a0. Hence there is a neighbourhood V1 such that intðOan;þðx0Þncl V1Þ – Y
follows. Choose a compact set K , int Da0 with nonvoid interior. By Theorem 4, there is a

neighbourhood V of Da0 such that intðOan;þðx0Þncl VÞ – Y for all n and all x0 [ K. Then

there is a tube around the corresponding trajectory leaving cl V . Hence the first exit time

from all points in K is bounded above with positive probability and the assertion

follows. A

Remark 2. In particular, Theorem 6 gives estimates for escape times for problems, where

the bifurcation parameter a is taken as the maximal amplitude of the random

perturbations, i.e. for families of random diffeomorphisms of the form

f aðx; vÞ U f ðx;avÞ;

where f : M £ Rd ! M and D is the unit ball in Rd.

Example 3. Continuing Examples 1 and 2 of the family f a given by (2), consider the

ergodic stationary measure supported on the invariant control set Da0 for a ¼ a0.

The results in this section can be applied for W an open neighbourhood of Da0 and

sequences an ! a0 with an . a0.

Remark 3. The question if results similar to Theorem 6 hold for more general locally

transient, nearly invariant sets, remains open.
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