TP2 Modellierungskriterien für eine stabile Co-Simulation gekoppelter PDAE-Systeme

Teilprojektleiterin:

Prof. Dr. Caren Tischendorf

Institut für Mathematik
Humboldt Universität zu Berlin
Unter den Linden 6
10099 Berlin, Germany
Büro Rudower Chaussee 25
12489 Berlin
Raum 2.217
e-mail tischendorf(at)math.hu-berlin.de
Mitarbeiter:

Dipl.Math. Jonas Pade

Institut für Mathematik
Humboldt Univerität zu Berlin
Unter den Linden 6
10099 Berlin, Germany
Büro Rudower Chausee 25
12489 Berlin
Raum 2.203
e-mail jonas.pade(at)math.hu-berlin.de

Projektbeschreibung

Eine zunehmend feinere Modellierung im Bereich der Elektronik und Mechanik berücksichtigt auch räumlich verteilte Effekte unter der Einbindung partieller Differentialgleichungen für bestimmte Teilkomponenten. Nach Ortsdiskretisierung erhält man für jede Teilkomponente DAEs von hoher Dimension. Zudem kommen je nach Modellkomponente verschiedene Ortsdiskretisierungen in Form von Simulationskomponenten zum Einsatz.

Der neue FMI-Standard [4] ermöglicht eine Co-Simulation von beliebig gekoppelten DAE-Systemen. Je nach Formulierung der Kopplung kann dies zu erheblichen Instabilitäten bei der numerischen Integration führen [2,3]. In [1] wurden notwendige und hinreichende Kriterien für eine stabile Integration gekoppelter Index-1-Systeme entwickelt. Hierbei spielt die Formulierung der Kopplung eine entscheidende Rolle. In diesem Projekt sollen die in [1] erzielten Ergebnisse auf strukturierte Systeme vom Index 2 ausgedehnt werden, da diese trotz leichter Instabilität in der Praxis erfolgreich für Simulationen der Teilsysteme genutzt werden (siehe z. B. Netzwerkgleichungen für elektronische Schaltungen und GGL-Formulierungen mechanischer Mehrkörpersysteme). Hinsichtlich der Strukturen stehen insbesondere Hessenberg-Systeme und Systemgleichungen für elektronische Netzwerke im Fokus, um die Ergebnisse auf die Benchmark-Systeme der Industriepartner anwenden zu können. In Zusammenarbeit mit TP1 sollen die in AP1.1 modellreduzierten nichtlinearen DAE-Systeme dahingehend analysiert und gegebenenfalls die Modellreduktionstechniken so adaptiert werden, dass eine stabile Co-Simulation mittels dynamischer Iteration bei Realisierung der entwickelten Kopplungsbedingungen möglich wird.

Darüber hinausgehend sollen formale mathematische Strukturen für allgemeine Teilsysteme und ihre Kopplung erarbeitet werden, die eine stabile gekoppelte Simulation ermöglichen. Basis hierfür sind einerseits die strukturellen Untersuchungen im Bereich elektronischer Schaltungen für gesteuerte Quellen (siehe [2]) und andererseits die Erfahrungen im Bereich der properen Formulierung von DAE-Systemen für eine stabilitätserhaltende numerische Integration [5,6].

Das Arbeitsprogramm gliedert sich in folgende Schritte:

Arbeitspaket 2.1: Stabilitätsanalyse für strukturierte (P)DAE-Systeme mit Teilkomponenten vom Index 1 und 2. Zu Beginn sollen die gekoppelten DAE-Systeme (auch ortsdiskretisierte PDAEs) in Hessenberg- oder Netzwerkform auf ihre Stabilitätseigenschaften untersucht werden. Diese Ergebnisse bilden die Grundlage für die weiteren Untersuchungen in AP 2.2 zur Erhaltung dieser Stabilitätseigenschaften bei einer Simulation mittels dynamischer Iteration der Teilsysteme. Zusätzlich sollen Stabilisierungstechniken für die modulare Zeitintegration gekoppelter Systeme entwickelt und getestet werden, die auf den mit FMI for Model Exchange and Co-Simulation v2.0 neu geschaffenen Möglichkeiten aufbauen (Jacobimatrizen der rechten Seiten und der Ausgangsgleichungen).

Arbeitspaket 2.2: Untersuchung verschiedener Kopplungsformulierungen auf das Stabilitätsverhalten einer dynamischen Iteration. Die bereits bekannten Stabilitätsbedingungen für die dynamische Iteration gekoppelter DAE-Index-1-Systeme in semiexpliziter Form sollen zunächst auf quasilineare DAEs in Netzwerk-Form erweitert werden. Daran anschließend sollen hinreichende Bedingungen für eine stabile Kopplung mit Index-2-Teilsystemen in Hessenberg- und Netzwerk-Form entwickelt werden. In Zusammenarbeit mit TP3 soll untersucht werden, unter welchen Verfahrensbeschränkungen die entwickelten Kopplungsbdingungen auch Stabilität bei Nutzung der in AP3.1 untersuchten Multirate-Ansätze garantieren.

Arbeitspaket 2.3: Entwicklung mathematischer Modellkriterien für eine stabile Co-Simulation von (P)DAE-Modellen. Schließlich sollen auf der Basis der Erkenntnisse von AP 2.2 für gekoppelte Systeme mit Komponenten in Hessenberg- oder Netzwerk-Form mathematische Modellkriterien für allgemeine (P)DAE-Systeme entwickelt werden, die eine stabile dynamische Iteration ermöglichen. Im Fokus stehen hierbei die in TP1 entwickelten modellreduzierten DAE-Systeme von ortsdiskretisierten PDAEs der gekoppelten elektromagnetischen Feld- und Schaltungssimulation.


Literatur

[1]
M. Arnold and M. Günther. Preconditioned dynamic iteration for coupled differential-algebraic systems. BIT, 41:1-25, 2001.
[2]
D. Estévez Schwarz and C. Tischendorf. Structural analysis for electric circuits and consequences for MNA. Internat. J. Circuit Theory Appl., 28:131-162, 2000.
[3]
D. Estévez Schwarz and C. Tischendorf. Mathematical problems in circuit simulation. Math. Comput. Model. Dyn. Syst., 7:215-223, 2001.
[4]
FMI. The Functional Mockup Interface. https://www.fmi-standard.org/.
[5]
I. Higueras, R. März, and C. Tischendorf. Stability preserving integration of index-1 DAEs. Appl. Numer. Math., 45:175-200, 2003.
[6]
I. Higueras, R. März, and C. Tischendorf. Stability preserving integration of index-2 DAEs. Appl. Numer. Math., 45:201-229, 2003.